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Overview of the Book

From an applied viewpoint, and mainly for Earth
observation, remote sensing is a tool for collecting
raster data or images. Remotely sensed images
represent an objective record of the spectrum relat-
ing to the physical properties and chemical compo-
sition of the Earth surface materials. Extracting
information from images is, on the other hand, a
subjective process. People with differing applica-
tion foci will derive very different thematic infor-
mation from the same source image. Image proces-
sing thus becomes a vital tool for the extraction of
thematic and/or quantitative information from raw
image data. For more comprehensive analysis, the
images need to be analysed in conjunction with
other complementary data, such as existing thema-
tic maps of topography, geomorphology, geology
and land use, or with geochemical and geophysical
survey data, or ‘ground truth’ data, logistical and
infrastructure information, which is where the geo-
graphical information system (GIS) comes into
play. GIS contains highly sophisticated tools for
themanagement, display and analysis of all kinds of
spatially referenced information.

Remote sensing, image processing and GIS are
all extremely broad subjects in their own right and
are far too broad to be covered in one book. As
illustrated in Figure 1, this book aims to pinpoint the
overlap between the three subjects, providing an
overview of essential techniques and a selection of
case studies in a variety of application areas. The
application cases are biased towards the earth

sciences but the image processing and GIS techni-
ques are generic and therefore transferable skills
suited to all applications.

In this book, we have presented a unique combi-
nation of tools, techniques and applications which
we hope will be of use to a wide community of
‘geoscientists’ and ‘remote sensors’. The book
begins in Part One with the fundamentals of the
core image processing tools used in remote sensing
andGISwith adequate mathematical details. It then
becomes slightly more applied and less mathemati-
cal in Part Two to cover the wide scope of GIS
where many of those core image processing tools
are used in different contexts. Part Three contains
the entirely applied part of the book where we
describe a selection of cases where image proces-
sing and GIS have been used, by us, in teaching,
research and industrial projects in which there is a
dominant remote sensing component. The book has
been written with university students and lecturers
in mind as a principal textbook. For students’ needs
in particular, we have tried to convey knowledge in
simple words, with clear explanations and with
conceptual illustrations. For image processing and
GIS, mathematics is unavoidable, but we under-
stand that this may be offputting for some. To
minimize such effects, we try to emphasize the
concepts, explaining in common-sense terms rather
than in too much mathematical detail. The result is
intended to be a comprehensive yet ‘easy learning’
solution to a fairly challenging topic.

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
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On the other hand, the book indeed presents in
depth some novel image processing techniques
and GIS approaches. There are sections providing
extended coverage of necessary mathematics and
advanced materials for use by course tutors and
lecturers; these sections will be marked by an

asterisk. Hence the book is for both students and
teachers. With many of our developed techniques
and most recent research case studies, it is also an
excellent reference book for higher level readers
including researchers and professionals in remote
sensing application sectors.

Figure 1 Schematic illustration of the scope of this book
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Part One
Image Processing

This part covers themost essential imageprocessing techniques for imagevisualization, quantitative analysis
and thematic information extraction for remote sensing applications. A series of chapters introduce topics
with increasing complexity from basic visualization algorithms, which can be easily used to improve digital
camera pictures, to much more complicated multi-dimensional transform-based techniques.

Digital image processing can improve image visual quality, selectively enhance and highlight particular
image features and classify, identify and extract spectral and spatial patterns representing different
phenomena from images. It can also arbitrarily change image geometry and illumination conditions to
give different views of the same image. Importantly, image processing cannot increase any information from
the original image data, although it can indeed optimize thevisualization for us to seemore information from
the enhanced images than from the original.

For real applications our considered opinion, based on years of experience, is that simplicity is beautiful.
Image processing does not follow the well-established physical law of energy conservation. As shown in
Figure P.1, often the results produced using very simple processing techniques in the first 10minutes of your
projectmay actually represent 90%of the job done!This should not encourageyou to abandon this book after
the first three chapters, since it is the remaining 10% that you achieve during the 90% of your time that will
serve the highest level objectives of your project. The key point is that thematic image processing should be
application driven whereas our learning is usually technique driven.

Simple 

Complex 

Time 

Results Im
age processing techniques 

Figure P.1 This simple diagram is to illustrate that the image processing result is not necessarily proportional to the
time/effort spent. On the one hand, you may spend little time in achieving the most useful results and with simple
techniques; on the other hand, you may spend a lot of time achieving very little using complicated techniques





1
Digital Image and Display

1.1 What is a digital image?

An image is a picture, photograph or any form of
a two-dimensional representation of objects or
a scene. The information in an image is presented
in tones or colours. A digital image is a two-
dimensional array of numbers. Each cell of a digital
image is called a pixel and the number representing
the brightness of the pixel is called a digital number
(DN) (Figure 1.1).As a two-dimensional (2D) array,
a digital image is composed of data in lines and
columns. The position of a pixel is allocatedwith the
line and column of its DN. Such regularly arranged
data, without x and y coordinates, are usually called
raster data. As digital images are nothing more
than data arrays, mathematical operations can be
readily performed on the digital numbers of images.
Mathematical operations on digital images are
called digital image processing.

Digital image data can also have a third dimen-
sion: layers (Figure 1.1). Layers are the images of
the same scene but containing different information.
In multi-spectral images, layers are the images of
different spectral ranges called bands or channels.
For instance, a colour picture taken by a digital
camera is composed of three bands containing red,
green and blue spectral information individually.
The term ‘band’ is more often used than ‘layer’ to
refer to multi-spectral images. Generally speaking,
geometrically registered multi-dimensional data-
sets of the same scene can be considered as layers

of an image. For example, we can digitize a geo-
logical map and then co-register the digital map
with a Landsat thematic mapper (TM) image. Then
the digital map becomes an extra layer of the scene
beside the seven TM spectral bands. Similarly, if we
have a dataset of a digital elevation model (DEM)
to which a SPOT image is rectified, then the DEM
can be considered as a layer of the SPOT image
beside its four spectral bands. In this sense, we can
consider a set of co-registered digital images as a
three-dimensional (3D) dataset and with the ‘third’
dimension providing the link between image pro-
cessing and GIS.

A digital image can be stored as a file in a
computer data store on a variety of media, such as
a hard disk, CD, DVD or tape. It can be displayed
in black and white or in colour on a computer
monitor as well as in hard copy output such as film
or print. It may also be output as a simple array of
numbers for numerical analysis. As a digital image,
its advantages include:

. The images do not change with environmental
factors as hard copy pictures and photographs do.

. The images can be identically duplicated without
any change or loss of information.

. The images can be mathematically processed to
generate new images without altering the original
images.

. The images can be electronically transmitted from
or to remote locations without loss of information.

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
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Remotely sensed images are acquired by sensor
systems onboard aircraft or spacecraft, such as
Earth observation satellites. The sensor systems can
be categorized into two major branches: passive
sensors and active sensors. Multi-spectral optical
systems are passive sensors that use solar radiation
as the principal source of illumination for imaging.
Typical examples include across-track and push-
broommulti-spectral scanners, and digital cameras.
An active sensor system provides its own mean of
illumination for imaging, such as synthetic aperture
radar (SAR). Details of major remote sensing
satellites and their sensor systems are beyond the
scope of this book but we provide a summary in
Appendix A for your reference.

1.2 Digital image display

We live in a world of colour. The colours of objects
are the result of selective absorption and reflection
of electromagnetic radiation from illumination
sources. Perception by the human eye is limited to
the spectral range of 0.38–0.75 mm, that is a very
small part of the solar spectral range. The world
is actually far more colourful than we can see.
Remote sensing technology can record over a much
wider spectral range than human visual ability
and the resultant digital images can be displayed
as either black and white or colour images using
an electronic device such as a computer monitor. In
digital image display, the tones or colours are visual
representations of the image information recorded
as digital image DNs, but they do not necessarily

convey the physicalmeanings of theseDNs.Wewill
explain this further in our discussion on false colour
composites later.

The wavelengths of major spectral regions used
for remote sensing are listed below:

Visible light (VIS) 0.4–0.7mm
Blue (B) 0.4–0.5mm
Green (G) 0.5–0.6mm
Red (R) 0.6–0.7mm

Visible–photographic infrared 0.5–0.9mm
Reflective infrared (IR) 0.7–3.0mm
Nearer infrared (NIR) 0.7–1.3mm
Short-wave

infrared (SWIR)
1.3–3.0mm

Thermal infrared (TIR): 3–5mm,
8–14 mm

Microwave 0.1–100 cm

Commonly used abbreviations of the spectral
ranges are denoted by the letters in brackets in the
list above. The spectral range covering visible light
and nearer infrared is the most popular for broad-
band multi-spectral sensor systems and it is usually
denoted as VNIR.

1.2.1 Monochromatic display

Any image, either a panchromatic image or a spec-
tral band of amulti-spectral image, can be displayed
as a black and white (B/W) image by a monochro-
matic display. The display is implemented by
converting DNs to electronic signals in a series of
energy levels that generate different grey tones
(brightness) from black towhite, and thus formulate
a B/W image display. Most image processing
systems support an 8 bit graphical display, which
corresponds to 256 grey levels, and displays DNs
from 0 (black) to 255 (white). This display range
is wide enough for human visual capability. It is
also sufficient for some of the more commonly
used remotely sensed images, such as Landsat
TM/ETMþ , SPOT HRV and Terra-1 ASTER
VIR-SWIR (see Appendix A); the DN ranges of

Figure 1.1 A digital image and its elements
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these images are not wider than 0–255. On the other
hand, many remotely sensed images have much
wider DN ranges than 8 bits, such as those from
Ikonos and Quickbird, whose images have an 11 bit
DN range (0–2047). In this case, the images can still
be visualized in an 8 bit display device in various
ways, such as by compressing the DN range into
8 bits or displaying the image in scenes of several
8 bit intervals of the whole DN range. Many sensor
systems offer wide dynamic ranges to ensure that
the sensors can record across all levels of radiation
energy without localized sensor adjustment. Since
the received solar radiation does not normally vary
significantly within an image scene of limited size,
the actual DN range of the scene is usually much
narrower than the full dynamic range of the sensor
and thus can be well adapted into an 8 bit DN range
for display.

In a monochromatic display of a spectral band
image, the brightness (grey level) of a pixel is
proportional to the reflected energy in this band
from the corresponding ground area. For instance,
in a B/W display of a red band image, light red
appears brighter than dark red. This is also true for
invisible bands (e.g. infrared bands), though the
‘colours’ cannot be seen. After all, any digital image
is composed of DNs; the physical meaning of
DNs depends on the source of the image. A mono-
chromatic display visualizes DNs in grey tones
from black to white, while ignoring the physical
relevance.

1.2.2 Tristimulus colour theory and RGB
colour display

If you understand the structure and principle of a
colour TV tube, you must know that the tube is
composedof three colourgunsof red, green andblue.
These three colours are known as primary colours.
The mixture of the light from these three primary
colours can produce any colour on a TV. This
property of the human perception of colour
can be explained by the tristimulus colour theory.
The human retina has three types of cones and the
response by each type of cone is a function of the
wavelength of the incident light; it peaks at 440 nm
(blue), 545 nm (green) and 680 nm (red). In other

words, each type of cone is primarily sensitive to
one of the primary colours: blue, green or red. A
colour perceived by a person depends on the pro-
portion of each of these three types of cones being
stimulated and thus can be expressed as a triplet of
numbers (r, g, b) even though visible light is elec-
tromagnetic radiation in a continuous spectrum of
380–750 nm. A light of non-primary colour C will
stimulate different portions of each cone type to
form the perception of this colour:

C ¼ rRþ gGþ bB: ð1:1Þ
Equal mixtures of the three primary colours

(r¼g¼ b) give white or grey, while equal mixtures
of any two primary colours generate a complemen-
tary colour. As shown in Figure 1.2, the complemen-
tary colours of red, green and blue are cyan,magenta
and yellow. The three complementary colours can
also be used as primaries to generate various colours,
as in colour printing. If you have experience of
colour painting, you must know that any colour can
be generated by mixing three colours: red, yellow
and blue; this is based on the same principle.

Digital image colour display is based entirely
on the tristimulus colour theory. A colour monitor,
like a colour TV, is composed of three precisely
registered colour guns, namely red, green and blue.
In the red gun, pixels of an image are displayed in
reds of different intensity (i.e. dark red, light red,
etc.) depending on their DNs. The same is true of the
green and blue guns. Thus if the red, green and blue
bands of amulti-spectral image are displayed in red,
green and blue simultaneously, a colour image
is generated (Figure 1.3) in which the colour of a
pixel is decided by the DNs of red, green and blue

Cyan

Red

Yellow

Green

Magenta

Blue

Figure 1.2 The relation of the primary colours to their
complementary colours
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bands (r, g, b). For instance, if a pixel has red and
greenDNs of 255 and blueDNof 0, itwill appears in
pure yellow on display. This kind colour display
system is called an additive RGB colour composite
system. In this system, different colours are gener-
ated by additive combinations of Red, Green and
Blue components.

As shown in Figure 1.4, consider the components
of an RGB display as the orthogonal axes of a 3D
colour space; the maximum possible DN level in
each component of the display defines the RGB
colour cube. Any image pixel in this systemmay be

represented by a vector from the origin to some-
where within the colour cube. Most standard RGB
display system can display 8 bits per pixel per
channel, up to 24 bits¼ 2563 different colours.
This capacity is enough to generate a so-called
‘true colour’ image. The line from the origin of the
colour cube to the opposite convex corner is known
as the grey line because pixel vectors that lie on this
line have equal components in red, green and blue
(i.e. r¼g¼ b). If the same band is used as red, green
and blue components, all the pixels will lie on the
grey line. In this case, a B/Wimagewill be produced
even though a colour display system is used.

As mentioned before, although colours lie in the
visible spectral range of 380–750 nm, they are used
as a tool for information visualization in the colour
display of all digital images. Thus, for digital image
display, the assignment of each primary colour for
a spectral band or layer can arbitrarily depend on
the requirements of the application, which may not
necessarily correspond to the actual colour of the
spectral range of the band. If we display three image
bands in the red, green and blue spectral ranges in
RGB, then a true colour composite (TCC) image
is generated (Figure 1.5, bottom left). Otherwise,
if the image bands displayed in red, green and blue
do not match the spectra of these three primary
colours, a false colour composite (FCC) image
is produced. A typical example is the so-called

Figure 1.3 Illustration of RGB additive colour image display

White 

Red

Green 

Blue 

Yellow

Cyan 

Magenta 

Black 

Colour 
Vector

Figure 1.4 The RGB colour cube
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standard false colour composite (SFCC) in which
the near-infrared band is displayed in red, the red
band in green and the green band in blue (Figure 1.5,
bottom right). The SFCC effectively highlights any
vegetation distinctively in red. Obviously, we could
display various image layers, which are without
any spectral relevance, as a false colour composite.
The false colour composite is the general case of an
RGB colour displaywhile the true colour composite
is only a special case of it.

1.2.3 Pseudo colour display

The human eye can recognize far more colours
than it can grey levels, so colour can be used very

effectively to enhance small grey-level differences
in a B/W image. The technique to display a
monochrome image as a colour image is called
pseudo colour display. A pseudo colour image is
generated by assigning each grey level to a unique
colour (Figure 1.6). This can be done by interactive
colour editing or by automatic transformation based
on certain logic. A common approach is to assign
a sequence of grey levels to colours of increasing
spectral wavelength and intensity.

The advantage of pseudo colour display is also its
disadvantage. When a digital image is displayed in
grey scale, using its DNs in a monochromic display,
the sequential numerical relationship between
different DNs is effectively presented. This crucial
information is lost in a pseudo colour display

Figure 1.5 True colour and false colour composites of blue, green, red and near-infrared bands of a Landsat-7 ETMþ
image. If we display the blue band in blue, green band in green and red band in red, then a true colour composite is
produced as shown at the bottom left. If we display the green band in blue, red band in green and near-infrared band
in red, then a so-called standard false colour composite is produced as shown at the bottom right

CH1 DIGITAL IMAGE AND DISPLAY 7



because the colours assigned to various grey levels
are not quantitatively related in a numeric sequence.
Indeed, the image in a pseudo colour display is an
image of symbols; it is no longer a digital image!We
can regard the grey-scale B/W display as a special
case of pseudo colour display in which a sequential
grey scale based on DN levels is used instead of
a colour scheme. Often, we can use a combination
of B/W and pseudo colour display to highlight
important information in particular DN ranges in
colours over a grey-scale background as shown in
Figure 1.6c.

1.3 Some key points

In this chapter, we learnt what a digital image is and
the elements comprising a digital image and we
also learnt about B/Wand colour displays of digital
images. It is important to remember thesekeypoints:

. A digital image is a raster dataset or a 2D array of
numbers.

. Our perception of colours is based on the tristimu-
lus theory of human vision. Any colour is com-
posedof threeprimarycolours: red,greenandblue.

. Using an RGB colour cube, a colour can be
expressed as a vector of the weighted summation
of red, green and blue components.

. In image processing, colours are used as a tool for
image information visualization. From this view-
point, the true colour display is a special case of
the general false colour display.

. Pseudo colour display results in the loss of the
numerical sequential relationship of the image
DNs. It is therefore no longer a digital image; it is
an image of symbols.

Questions

1.1 What is a digital image and how is it composed?
1.2 What are the major advantages of digital

images over traditional hard copy images?
1.3 Describe the tristimulus colour theory and

principle of RGB additive colour composition.
1.4 Explain the relationship between primary

colours and complementary colours using a
diagram.

1.5 Illustrate the colour cube in a diagram. How is
a colour composed of RGB components?
Describe the definition of the grey line in the
colour cube.

1.6 What is a false colour composite? Explain the
principle of using colours as a tool to visualize
spectral information of multi-spectral images.

1.7 How is a pseudo colour display generated?
What are the merits and disadvantages of
pseudo colour display?

Figure 1.6 (a) An image in grey-scale (B/W) display; (b) the same image in a pseudo colour display; and (c) the
brightest DNs are highlighted in red on a grey-scale background
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2
Point Operations
(Contrast Enhancement)

Contrast enhancement, sometimes called radiomet-
ric enhancement or histogram modification, is the
most basic but also the most effective technique
for optimizing the image contrast and brightness for
visualization or for highlighting information in
particular DN ranges.

Let X represent a digital image and xij be the DN
of any a pixel in the image at line i and column j. Let
Y represent the image derived from X by a function
f and yij be the output value corresponding to xij.
Then a contrast enhancement can be expressed in
the general form

yij ¼ f ðxijÞ: ð2:1Þ
This processing transforms a single input image X
to a single output image Y, through a function f, in
such away that theDNof an output pixel yij depends
on and only on the DN of the corresponding input
pixel xij. This type of processing is called a point
operation. Contrast enhancement is a point opera-
tion that modifies the image brightness and contrast
but does not alter the image size.

2.1 Histogram modification and
lookup table

Let x represent a DN level of an image X; then the
number of pixels of each DN level hi(x) is called the

histogram of the image X. The hi(x) can also be
expressed as a percentage of the pixel number of a
DN level x against the total number of pixels in the
image X. In this case, in statistical terms, hi(x) is a
probability density function.

A histogram is a good presentation of the contrast,
brightness and data distribution of an image. Every
image has a unique histogram but the reverse is not
necessarily true because a histogram does not con-
tain any spatial information. As a simple example,
imagine how many different patterns you can form
on a 10� 10 grid chessboard using 50 white pieces
and 50 black pieces. All these patterns have the same
histogram!

It is reasonable to call a point operation a histo-
grammodification because the operation only alters
the histogram of an image but not the spatial rela-
tionship of image pixels. In Equation (2.1), point
operation is supposed to be performed pixel by
pixel. For the pixels with the same input DN but
different locations (xij¼ xkl), the function f will
produce the same output DN (yij¼ ykl). Thus the
point operation is independent of pixel position. The
point operation on individual pixels is the same as
that on DN levels:

y ¼ f ðxÞ: ð2:2Þ
As shown in Figure 2.1, suppose hi(x) is a

continuous function; as a point operation does not
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change the image size, the number of pixels in the
DN range dx in the input image X should be equal
to the number of pixels in the DN range dy in the
output image Y. Thus we have

hiðxÞdx ¼ hoðyÞdy: ð2:3Þ
Let dx ! 0; then dy ! 0 and

hiðxÞdx ¼ hoðyÞdy: ð2:4Þ
Therefore,

hoðyÞ ¼ hiðxÞ dx
dy

¼ hiðxÞ dx

f 0ðxÞdx ¼
hiðxÞ
f 0ðxÞ : ð2:5Þ

We can also write (2.5) as

hoðyÞ ¼ hiðxÞ
y0

:

The formula (2.5) shows that the histogram of the
output image can be derived from the histogram of
the input image divided by the first derivative of the
point operation function.

For instance, given a linear function y¼ 2x� 6,
then y0 ¼ 2 and from (2.5) we have

hoðyÞ ¼ 1

2
hiðxÞ:

Thislinearfunctionwillproduceanoutputimagewith
a flattenedhistogram twiceaswideandhalfashighas
that of the input image andwith all theDNs shifted to
the left by three DN levels. This linear function
stretches the imageDN range to increase its contrast.

As f 0(x) is the gradient of the point operation
function f(x), formula (2.5) thus indicates:

(a) when the gradient of a point operation function
is greater than 1, it is a stretching functionwhich
increases the image contrast;

(b) when the gradient of a point operation function
is less than 1, it is a compression functionwhich
decreases the image contrast;

(c) if the gradient of a point operation function is
negative, then the image becomes negativewith
black and white inverted.

For a nonlinear point operation function, this
stretches and compresses different sections of DN
levels, depending on its gradient at different DN
levels, as shown later in the discussion on logarith-
mic and exponential point operation functions.

In the real case of an integer digital image, both
hi(x) and ho(y) are discrete functions. Given a point
operation y¼ f(x), the DN level x in the image X is
converted to a DN level y in output image Yand the
number of pixels with DN value x in X is equal to
that of pixels with DN value y in Y. Thus,

hiðxÞ ¼ hoðyÞ: ð2:6Þ
Equation (2.6) seems contradictory to Equa-

tion (2.3): that is, hi(x)dx¼ ho(y)dy for the case of
a continuous function. In fact, Equation (2.6) is a
special case of Equation (2.3) for dx¼ dy¼ 1,
where 1 is the minimal DN interval for an integer
digital image. Actually the point operation modifies
the histogram of a digital image by moving the
‘histogram bar’ of each DN level x to a new DN
level y according to the function f. The length of each
histogram bar is not changed by the processing
and thus no information is lost, but the distances
between histogram bars are changed. For the given
example above, the distance between histogram bars
is doubled and thus the equivalent histogram avera-
ged by the gap is flatter than the histogram of the
input image (Figure2.2). In this sense,Equation (2.3)
always holds while Equation (2.6) is true only for
individual histogram bars but not for the equivalent
histogram. A point operationmaymerge several DN
levels of an input image into one DN level of the
output image. Equation (2.6) is then no longer true
for some histogram bars and the operation results in
information loss.

f(x)

x

y

x

y

hi(x)
ho(y) x

Figure 2.1 The principles of the point operation by
histogram modification
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As point operation is in fact a histogram modifi-
cation, it can be performed more efficiently using a
lookup table (LUT). An LUT is composed of DN
levels of an input image X and their corresponding
DN levels in the output image Y; an example is
shown in Table 2.1. When applying a point opera-
tion function to enhance an image, firstly the LUT is
generated by applying the function y¼ f(x) to every
DN level x of the input image X to generate the
corresponding DN level y in the output image Y.
Then, the output image Y is produced by just
replacing x with its corresponding y for each pixel.
In this case for an 8 bit image, y¼ f(x) needs to be
calculated for no more than 256 times. If a
point operation is performed without using an LUT,
y¼ f(x) needs to be calculated as many times as the
total number of pixels in the image. For a large
image, the LUT approach speeds up processing
dramatically, especially when the point operation
function y¼ f(x) is a complicated one.

As most display systems can only display 8 bit
integers in 0–255 grey levels, it is important to con-
figure a point operation function in such a way that
the value range of an output imageY is within 0–255.

2.2 Linear contrast enhancement

The point operation function for linear contrast
enhancement (LCE) is defined as

y ¼ axþ b: ð2:7Þ
It is the simplest and one of the most effective

contrast enhancement techniques. In this function,
coefficient a controls the contrast of output images
and bmodifies the overall brightness by shifting the
zero position of the histogram of y to �b/a (to the
left if negative and to the right if positive). LCE
improves image contrast without distorting the
image information if the output DN range is wider
than the input DN range. In this case, the LCE does
nothing more than widen the increment of DN
levels and shift histogram position along the
image DN axis. For instance, the LCE function
y¼ 2x� 6 shifts the histogram hi(x) to the left by
three DN levels and doubles the DN increment of x
to produce an output image Y with a histogram
ho(y)¼ hi(x)/2 that is two times wider than but half
the height of the original.

There are several popular LCE algorithms avail-
able in most image processing software packages:

1. Interactive linear stretch: This changes a and b
of formula (2.7) interactively to optimize the
contrast and brightness of the output image
based on the user’s visual judgement.

x

h(x)i

y

ho(y)
(b)(a)

Figure 2.2 Histograms before (a) and after (b) linear stretch for integer image data. Though the histogram bars
in the histogram of the stretched image on the right are the same height as those in the original histogram on
the left, the equivalent histogram drawn in the curve is wider and flatter because of the wider interval of these
histogram bars

Table 2.1 An example LUT for a linear
point operation function y¼ 2x� 6

x y

3 0
4 2
5 4
6 6
7 8
8 10

. . . . . .
130 254
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2. Piecewise linear stretch: This uses several diffe-
rent linear functions to stretch differentDN ranges
ofan input image (Figure2.3a–c).Piecewise linear
stretch (PLS) is a very versatile point operation
function: it can be used to simulate a nonlinear
function that cannot be easily defined by a mathe-
matical function.Most image processing software
packageshaveinteractivePLSfunctionalityallow-
ing users to configure PLS for optimized visuali-
zation. Thresholding can be regarded as a special
case of PLS as shown in Figure 2.3d–e, though in
concept it is a conditional logic operation.

3. Linear scale: This automatically scales the DN
range of an image to the full dynamic range of
the display system (8 bits) based on the maxi-
mum and minimum of the input image X.

y ¼ 255½x�minðxÞ�=½maxðxÞ�minðxÞ�: ð2:8Þ

In many modern image processing software
packages, this function is largely redundant as
the operation specified in (2.8) can be easily done

using an interactivePLS.However, formula (2.8)
helps us to understand the principle.

4. Mean/standard deviation adjustment: This line-
arly stretches an image to make it satisfy a given
mean (Eo) and standard deviation (SDo):

y¼ EoþSDo
x�Ei

SDi
or y¼ SDo

SDi
xþEo�SDo

SDi
Ei

ð2:9Þ
where Ei and SDi are the mean and standard
deviation of the input image X.

These last two linear stretch functions are often
used for automatic processing while, for interactive
processing, PLS is the obvious choice.

2.2.1 Derivation of a linear function
from two points

As shown in Figure 2.4, a linear function y¼ ax þ b
can be uniquely defined by two points (x1, y1) and

Figure 2.3 Interactive PLS function for contrast enhancement and thresholding: (a) the original image; (b) the PLS
function for contrast enhancement; (c) the enhanced image; (d) the PLS function for thresholding; and (e) the binary
image produced by thresholding
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(x2, y2) based on the formula

y�y1
x�x1

¼ y2�y1
x2�x1

:

Given x1¼min(x), x2¼max(x) and y1¼ 0, y2¼
255, we then have

y

x�minðxÞ ¼
255

maxðxÞ�minðxÞ :

Thus y¼ 255(x�min(x))/(max(x)�min(x)).
Similarly, linear functions for mean and standard

deviation adjustment defined in (2.9) can be derived
from either

x1 ¼ Ei; x2 ¼ Ei þ SDi; y1 ¼ Eo; y2 ¼ Eo þ SDo

or

x1 ¼ Ei; x2 ¼ Ei�SDi; y1 ¼ Eo; y2 ¼ Eo�SDo:

2.3 Logarithmic and exponential
contrast enhancement

Logarithmic and exponential functions are
inverse operations of one another. For contrast
enhancement, the two functions modify the image
histograms in opposite ways. Both logarithmic and
exponential functions change the shapes of image

histograms and distort the information in original
images.

2.3.1 Logarithmic contrast enhancement

The general form of the logarithmic function used
for image processing is defined as

y ¼ b lnðaxþ 1Þ: ð2:10Þ
Herea (>0) controls the curvature of the logarithmic
functionwhileb is a scaling factor tomake theoutput
DNs fallwithin a givenvalue range, and the shift 1 is
to avoid the zero value at which the logarithmic
function loses its meaning. As shown in Figure 2.5,
thegradientof the function isgreater than1 in the low
DNrange, thus it spreadsout lowDNvalues,while in
the highDN range the gradient of the function is less
than1andsocompresseshighDNvalues.Asaresult,
logarithmic contrast enhancement shifts the peak of
the image histogram to the right and highlights the
details in dark areas in an input image.Many images
have histograms similar in form to logarithmic
normal distributions. In such cases, a logarithmic
functionwill effectivelymodify the histogram to the
shape of a normal distribution.

We can slightly modify formula (2.10) to intro-
duce a shift constant c:

y ¼ b lnðaxþ 1Þþ c: ð2:11Þ
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Figure 2.4 Derivation of a linear function from two points of input image X and output image Y
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This function allows the histogram of the output
image to shift by c.

2.3.2 Exponential contrast enhancement

The general form of the exponential function used
for image processing is defined as

y ¼ b eaxþ 1: ð2:12Þ
Here again,a (>0) controls the curvatureof theexpo-
nential function while b is a scaling factor to make
the output DNs falls within a given value range, and
the exponential shift 1 is to avoid the zero value
because e0� 1. As the inverse of the logarithmic
function, exponential contrast enhancement shifts
the image histogram to the left by spreading out high
DN values and compressing low DN values to
enhancedetail in light areas at the cost of suppressing
the tone variation in the dark areas (Figure 2.6).
Again, we can introduce a shift parameter c, to
modify the exponential contrast enhancement func-
tion as below:

y ¼ b eaxþ 1 þ c: ð2:13Þ

2.4 Histogram equalization

Histogram equalization (HE) is a very useful
contrast enhancement technique. It transforms an

input image to an output image with a uniform
(equalized) histogram. The key point of HE is to
find the function that converts hi(x) to ho(y)¼A,
whereA is a constant. Suppose imageX hasN pixels
and the desired output DN range is L (the number of
DN levels). Then

hoðyÞ ¼ A ¼ N

L
: ð2:14Þ

According to (2.4)

dy ¼ hiðxÞdx=hoðyÞ ¼ L

N
hiðxÞdx: ð2:15Þ

Thus, the HE function is

y ¼ L

N

ð
hiðxÞd x ¼ L

N
HiðxÞ: ð2:16Þ

As the histogram hi(x) is essentially the probabil-
ity density function of X, theHi(x) is the cumulative
distribution function of X. The calculation of Hi(x)
is simple for a discrete function in the case of digital
images. For a given DN level x,Hi(x) is equal to the
total number of those pixels with DN values no
greater than x:

HiðxÞ ¼
Xx
k¼0

hiðkÞ: ð2:17Þ

Theoretically, HE can be achieved if Hi(x) is a
continuous function. However, asHi(x) is a discrete
function for an integer digital image, HE can only
produce a relatively flat histogram mathematically

Figure 2.6 Exponential contrast enhancement function

Figure 2.5 Logarithmic contrast enhancement function
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equivalent to an equalized histogram, in which the
distance between histogram bars is proportional to
their heights (Figure 2.7).

The idea behind the HE contrast enhancement is
that the data presentation of an image should be
evenly distributed across the whole value range. In
reality, however,HEoften produces imageswith too
high a contrast. This is because natural scenes are
more likely to follow normal (Gaussian) distribu-
tions and, consequently, the human eye is adapted to
be more sensitive for discriminating subtle grey-
level changes, of intermediate brightness, than of
very high and very low brightness.

2.5 Histogram matching and
Gaussian stretch

Histogram matching (HM) is a point operation that
transforms an input image to make its histogram

match a given shape defined by either a mathemati-
cal function or the histogram of another image. It is
particularly useful for image comparison and
differencing. If the two images in question are
modified to have similar histograms, the compari-
son will be on a fair basis.

HM can be implemented by applying HE twice.
Formula (2.14) implies that an equalized histogram
is only decided by image size N and the output DN
range L. Images of the same size always have the
same equalized histogram for a fixed output
DN range and thus HE can act as a bridge to link
images of the same size but different histograms
(Figure 2.8). Consider hi(x) as the histogram of an
input image and ho(y) the reference histogram to be
matched. Suppose z¼ f(x) is the HE function to
transform hi(x) to an equalized histogram he(z), and
z¼ g(y) the HE function to transform the reference
histogram ho(y) to the same equalized histogram
he(z). Then

z ¼ gðyÞ ¼ f ðxÞ:

Thus

y ¼ g�1ðzÞ ¼ g�1ff ðxÞg: ð2:18Þ

Recall from formula (2.16) that f(x) and g(y) are
the cumulative distribution functions of hi(x)
and ho(y) individually. Thus HM can be easily
implemented by a three-column LUT containing
corresponding DN levels of x, z and y. An input DN
level x will be transformed to an output DN level y
sharing the same z value. As shown in Table 2.2, for
x¼ 5, z¼ 3, while for y¼ 0, z¼ 3. Thus for an input
x¼ 5, the LUT coverts to an output y¼ 0 and so on.
The output image Y will have a histogram that
matches the reference histogram ho(y).

Figure 2.7 Histogram of histogram equalization

)(xhi )(yho)(zhe

)(xfz )(ygz

x y z

Figure 2.8 Histogram equalization acts as a bridge for histogram matching
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If the reference histogram ho(y) is defined by a
Gaussian distribution function

hoðyÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp
�ðx� �xÞ2

2s2

 !
ð2:19Þ

where s is the standard deviation and �x the mean
of image X, the HM transformation is then called
Gaussian stretch since the resultant image has a
histogram in the shape of a Gaussian distribution.

2.6 Balance contrast enhancement
technique

Colour bias is one of the main causes of poor colour
composite images. For RGB colour composition, if
the average brightness of one image band is signifi-
cantly higher or lower than the other two, the
composite image will show obvious colour bias.
To eliminate this, the three bands used for colour
composition must have an equal value range and
mean. The balance contrast enhancement technique
(BCET) is a simple solution to this problem.Using a
parabolic function derived from an input image,
BCET can stretch (or compress) the image to a
given value range and mean without changing the
basic shape of the image histogram. Thus three
image bands for colour composition can be adjusted
to the same value range and mean to achieve a
balanced colour composite.

The BCET based on a parabolic function is

y ¼ aðx� bÞ2 þ c: ð2:20Þ

This general form of parabolic function is defined
by three coefficients: a, b and c. It is therefore
capable of adjusting three image parameters:

minimum, maximum and mean. The coefficients
a, b and c can be derived based on the minimum,
maximum andmean (l, h and e) of the input imageX
and the given minimum, maximum and mean (L, H
and E) for the output image Y as follows:

b ¼ h2ðE� LÞ� sðH� LÞþ l2ðH�EÞ
2½hðE� LÞ� eðH� LÞþ lðH�EÞ�

a ¼ H� L

ðh� lÞðhþ l� 2bÞ
c ¼ L� aðl� bÞ2

ð2:21Þ

where s is the mean square sum of input image X,

s ¼ 1

N

XN
i¼1

x2i :

Figure 2.9 illustrates a comparison between RGB
colour composites using the original band 5, 4 and 1
of an ETMþ sub-scene and the same bands after
BCET stretch. The colour composite of the original
bands (Figure 2.9a) shows strong colour bias to
magenta as the result of much lower brightness in
band 4, displayed in green. This colour bias is
completely removed by BCET which stretches all
the bands to the same value range 0–255 and mean
110 (Figure 2.9b). The BCET colour composite in
Figure 2.9b presents various terrain materials (rock
types, vegetation, etc.) in much more distinctive
colours than those in the colour composite of the
original image bands in Figure 2.9a. An interactive
PLS may achieve similar results but without quan-
titative control.

2.6.1 �Derivation of coefficients, a, b and c for
a BCET parabolic function (Liu,1991)

Let xi represent any pixel of an input image X, with
N pixels. Then the minimum, maximum and mean
of X are

l ¼ minðxiÞ; h ¼ maxðxiÞ;

e ¼ 1

N

XN
i¼1

xi; i ¼ 1; 2; . . . ;N:

Suppose L, H and E are the desired minimum,
maximum and mean for the output image Y. Then

Table 2.2 An example LUT for histogram matching

x z y

5 3 0
6 4 2
7 5 4
8 6 5
. . . . . . . . .
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we can establish following equations:

L ¼ aðl� bÞ2 þ c

H¼ aðh� bÞ2 þ c

E ¼ 1

N

XN
i¼1

½aðxi � bÞ2 þ c�:
ð2:22Þ

Solving for b from (2.22),

b ¼ h2ðE� LÞ� sðH� LÞþ l2ðH�EÞ
2½hðE� LÞ� eðH� LÞþ lðH�EÞ� ð2:23Þ

where

s ¼ 1

N

XN
i¼1

x2i :

With b known, a and c can then be resolved
from (2.22) as

a ¼ H� L

ðh� lÞðhþ l� 2bÞ ð2:24Þ

c ¼ L� aðl� bÞ2: ð2:25Þ
The parabolic function is an even function

(Figure 2.10a). Coefficients b and c are the coordi-
nates of the turning point of the parabola which
determine the section of the parabola to be utilized
by the BCET function. In order to perform BCET,
the turning point and its nearby section of the

parabola should be avoided, so that only the section
of the monotonically increasing branch of the curve
is used. This is possible for most cases of image
contrast enhancement.

From the solutions of a, b and c in Equa-
tions (2.23)–(2.25), we can make the following
observations:

(a) If b < l and a > 0, the parabola is open upwards
and a section of the right (monotonically
increasing) branch of the parabola is used in
BCET.

(b) If b > h and a < 0, the parabola is open down-
wards and a section of the left (monotonically
increasing) branch of the parabola is used in
BCET.

(c) If l < b < h, then BCET fails to avoid the turning
point of the parabola and malfunctions.

For example, Table 2.3 shows the minimum (l)
maximum (h) and mean (e) of seven band images of
a Landsat TM sub-scene and the corresponding
coefficients of the BCET parabolic functions. Using
these parabolic functions, images of bands 1–5 and 7
are all successfully stretched to the givenvalue range
and mean: L¼ 0, H¼ 255 and E¼ 100 as shown in
the right part of the table. The only exception is the
band 6 image because l< b< h and BCET malfunc-
tions. As illustrated in Figure 2.10b, the BCET

Figure 2.9 Colour composites of ETMþ bands 5, 4 and 1 in red, green and blue: (a) colour composite of the original
bands showing magenta cast as the result of colour bias; and (b) BCET colour composite stretching all the bands to an
equal value range of 0–255 and mean of 110
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parabolic function for band 6 involves the turning
point and both branches of the parabola within the
value range of this image, unlike all the other bands
where only one monotonic branch is used.

2.7 Clipping in contrast
enhancement

In digital images, a few pixels (often representing
noise)may occupy awide value range at the low and
high ends of histograms. In such cases, setting a
proper cut-off to clip both ends of the histogram in
contrast enhancement is necessary tomake effective
use of the dynamic range of a display device.
Clipping is often given as a percentage of the total
number of pixels in an image. For instance, if 1%
and 99% are set as the cut-off limits for the low and
high ends of the histogram of an image, the image
is then stretched to set the DN level xl, where
Hi(xl)¼ 1%, to 0 and DN level xh, where Hi(xh)¼
99%, to 255 for an 8 bit per pixel per channel display
in the output image.

This simple treatment often improves image
display quality significantly, especially when the
image looks hazy because of atmospheric scatter-
ing. When using BCET, the input minimum (l) and

maximum (h) should be determined based on
appropriate cut-off levels of xl and xh.

2.8 Tips for interactive contrast
enhancement

The general purpose of contrast enhancement is
to optimize visualization. Often after quite com-
plicated image processing, you will need to apply
interactive contrast enhancement to view the re-
sults properly. After all, you need to be able to see
the image! Visual observation is always the most
effective way to judge image quality. This does
not sound technical enough for digital image
processing but this golden rule is quite true! On
the other hand, the histogram gives you a quanti-
tative description of image data distribution and so
can also effectively guide you to improve the
image visual quality. As mentioned earlier, the
business of contrast enhancement is histogram
modification and so you should find the following
guidelines useful:

1. Make full use of the dynamic range of the display
system. This can be done by specifying the
actual limits of the input image to be displayed

Figure2.10 (a) Standard parabolas y¼ x2and y¼�x2, the cases of a¼�1, b¼ 0, c¼ 0 for y¼ a(x� b)2 þ c; and (b)
BCET parabolic functions for seven band images of a TM sub-scene. The parabola for the band 6 image in red involves the
turning point and both branches and is therefore not usable

18 PART ONE IMAGE PROCESSING



in 0 and 255 for an 8 bit display. Here percentage
clipping is useful to avoid large gaps in either end
of the histogram.

2. Adjust the histogram to put its peak near the
centre of the display range. Formany images, the
peak may be slightly skewed towards the left to
achieve the best visualization, unless the image
is dominated by bright features in which case the
peak could skew to the right.

3. Note that, as implied by formula (2.5), a point
operation function modifies an image histogram
according to the function’s gradient or slope
f 0(x):
(a) If gradient¼ 1 (slope¼ 45�), the function

does nothing and the image is not changed.
(b) If gradient >1 (slope > 45�), the function

stretches the histogram to increase image
contrast.

(c) If gradient < 1 (slope < 45�) and non-nega-
tive, the function compresses the histogram
to decrease image contrast.

A common approach in the PLS is therefore to
use functions with slope >45� to spread the peak
section and those with slope <45� to compress the
tails at both ends of the histogram.

Questions

2.1 What is a point operation in image processing?
Give the mathematical definition.

2.2 Using a diagram, explain why a point operation
is also called histogram modification.

2.3 Given the following point operation functions,
derive the output histograms ho(y) from the
input histogram hi(x):

y ¼ 3x� 8; y ¼ 2:5x2 � 3xþ 2; y ¼ sinðxÞ:
2.4 Try to derive the linear scale functions and the

mean and standard deviation adjustment func-
tions defined by formulae (2.8) and (2.9). (See
the answer at the end in Figure 2.11.)

2.5 Given Figure 2.6 of exponential contrast
enhancement, roughly mark the section of
the exponential function that stretches the
input image and the section that compresses
the input image and explain why (refer to
Figure 2.5).Ta
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2.6 How is histogram equalization (HE) achieved?
HowisHEused toachievehistogrammatching?

2.7 What type of function does aBCETuse and how
is balanced contrast enhancement achieved?

2.8 Try to derive the coefficients a, b and c in the
BCET function y¼ a(x� b)2 þ c.

2.9 What is clipping andwhy is it often essential for
image display?

Figure 2.11 Derivation of the linear stretch function and mean/standard deviation adjustment function

20 PART ONE IMAGE PROCESSING



3
Algebraic Operations
(Multi-image Point Operations)

For multi-spectral or, more generally, multi-layer
images, algebraic operations such as the four basic
arithmetic operations (þ , �, �, �), logarithms,
exponentials and trigonometric functions can be
applied to the DNs of different bands for each pixel
to produce a new image. Such processing is called
image algebraic operation. Algebraic operations are
performed pixel by pixel among DNs of spectral
bands (or layers) for each pixel without involving
neighbourhood pixels. They can therefore be con-
sidered as multi-image point operations defined as
follows:

y ¼ f ðx1; x2; . . . ; xnÞ ð3:1Þ
where n is the number of bands or layers.

Obviously, all the images involving algebraic
operations should be precisely co-registered.

To start with, let us consider the four basic
arithmetic operations: addition, subtraction, multi-
plication and division. In multi-image point opera-
tions, arithmetic processing is sometimes the same
as matrix operations, such as addition and sub-
traction, but sometimes totally different from and
much simpler thanmatrix operations, such as image
multiplication and division. As the image algebraic
operation is entirely local, that is pixel-to-pixel
based, we can generalize the description. Let Xi,

i¼ 1,2, . . . , n, represent both the ith band image and
any pixel in the ith band image of an n-band imagery
dataset X, Xi2X, and Y the output image as well as
any pixel in the output image.

3.1 Image addition

This operation produces a weighted summation of
two or more images:

Y ¼ 1

k

Xn
i¼1

wiXi ð3:2Þ

where wi is the weight of image Xi and k is a scaling
factor.

If wi¼ 1 for i¼ 1, . . ., n and k¼ n, formula (3.2)
defines an average image.

An important application of image addition is to
reduce noise and increase the signal to noise ratio
(SNR). Suppose each image band of an n-band
multi-spectral image is contaminated by an additive
noise source Ni (i¼ 1,2, . . . , n); then the noise
pixels are not likely to occur at the same positions
in different bands and thus a noise pixel DN in band
i will be averaged with the non-noise DNs in the
other n� 1 bands. As a result the noise will be
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largely suppressed. It is proved from signal proces-
sing theory that, of n duplications of an image, each
contaminated by the same level of randomnoise, the
SNRof the sum image of these n duplications equals
the square root n times the SNR of any individual
duplication:

SNRy ¼
ffiffiffi
n

p � SNRi: ð3:3Þ
The formula (3.3) implies that for an n-band

multi-spectral image, the summation of all the
bands can increase SNR by about

ffiffiffi
n

p
times. For

instance, if we average bands 1–4 of a Landsat TM
image, the SNR of this average image is about two
times ð ffiffiffi

4
p ¼ 2Þ of that of each individual band.

You may notice in our later chapters on topics
of RGB–IHS (red, green and blue to intensity, hue
and saturation) transformation and principal com-
ponent analysis (PCA) that an intensity component
derived from RGB–IHS transformation is an aver-
age image of the R, G andB component images and,
in most cases, the first principal component is a
weighted sum image of all the images involving
PCA operations.

3.2 Image subtraction
(differencing)

Image subtraction produces a difference image
from two input images:

Y ¼ 1

k
ðwiXi �wjXjÞ: ð3:4Þ

Theweightswi andwj are important to ensure that
balanced differencing is performed. If the bright-
ness of Xi is significantly higher than that of Xj,
for instance, the difference image Xi�Xj will be
dominated by Xi and, as a result, the true difference
between the two images will not be effectively
revealed. To produce a ‘fair’ difference image,
BCET or histogram matching (matching the histo-
gram of Xi to that of Xj) may be applied as a pre-
processing step. Whichever method is chosen, the
differencing that follows should then be performed
with equal weighting (wi¼wj¼ 1).

Subtraction is one of the simplest and most
effective techniques for selective spectral enhance-

ment and it is also useful for change detection and
removal of background illumination bias. However,
in general, subtraction reduces the image informa-
tion and decreases image SNR because it removes
the common features while retaining the random
noise in both images.

Band differences of multi-spectral images are
successfully used for studies of vegetation, land
use and geology. As shown in Figure 3.1, the band
difference of TM3 – TM1 (R –B) highlights iron
oxides; TM4 – TM3 (NIR –Red) enhances vegeta-
tion; and TM5 – TM7 is effective for detecting
hydrated (clay) minerals (i.e. those containing the
OH� ion; refer to Table A.1 in Appendix A for the
spectral wavelengths of Landsat TM). These three
difference images can be combined to form an
RGB colour composite image to highlight iron
oxides, vegetation and clay minerals in red, green
and blue as well as other ground objects in various
colours. In many cases, subtraction can achieve
similar results to division (ratio) and the operation
is simpler and faster.

The image subtraction technique is also widely
used for background noise removal in microscop-
ic image analysis. An image of the background
illumination field (as a reference) is captured
before the target object is placed in the field.
The second image is then taken with the target
object in the field. The difference image between
the two will retain the target while the effects of
the illumination bias and background noise are
cancelled out.

3.3 Image multiplication

Image multiplication is defined as

Y ¼ Xi �Xj: ð3:5Þ

Here the imagemultiplication is performed pixel by
pixel; at each image pixel, its band i DN is multi-
plied with band j DN. This is fundamentally differ-
ent from matrix multiplication. A digital image is a
2D array, but it is not a matrix.

A multiplication product image often has much
greater DN range than the dynamic range of the
display devices and thus need to be rescaled before
display. Most image processing software packages
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can display any image based on its actual value
range which is then fitted into a 0–255 display
range.

One application of multiplication is masking.
For instance, if Xi is a mask image composed of
DN values 0 and 1, the pixels in image Xj which
correspond to 0 in Xi will become 0 (masked off)
and others will remain unchanged in the product
image Y. This operation could be achieved more
efficiently using a logical operation of a given
condition. Another application is image modu-
lation. For instance, topographic features can be
added back to a colour-coded classification image
by using a panchromatic image (as an intensity
component) to modulate the three colour compo-

nents (red, green and blue) of the classification
image as follows:

1. Produce red (R), green (G) and blue (B) compo-
nent images from the colour-coded classification
image.

2. Use the relevant panchromatic image (I) to
modulate the R, G and B components: R� I,
G� I and B� I.

3. Colour composition usingR� I,G� I andB� I.

This process is, in some image processing soft-
ware packages, automated bydraping a colour-coded
classification image on an intensity image layer
(Figure 3.2).

Figure 3.1 Difference images of a Landsat TM image: (a) TM3 – TM1 highlights red features often associated to iron
oxides; (b) TM4 – TM3 detects the diagnostic ‘red edge’ features of vegetation; (c) TM5 – TM7 enhances the clay mineral
absorption features in SWIR spectral range; and (d) the colour composite of TM3 – TM1 in red, TM4 – TM3 in green and
TM5 – TM7 in blue highlights iron oxide, vegetation and clay minerals in red, green and blue colours
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3.4 Image division (ratio)

Image division is a very popular technique, also
known as an image ratio. The operation is defined as

Y ¼ Xi

Xj
: ð3:6Þ

In order to carry out image division, certain
protection is needed to avoid overflow, in case a
number is divided by 0. A commonly used trick in
this context is to change 0 to 1 whenever 0 becomes
a divisor. A better approach is to shift the value
range of the denominator image upwards, by 1,
to avoid 0. For an 8 bit image, this shift changes
the image DN range from 0–255 to 1–256 which
just exceeds 8 bits. This was a problem in the
older generation of image processing systems be-
fore the 1990s but is no longer in most modern
image processing software packages where the
image processing is performed based on the dou-
ble-precision, floating-point data type.

A ratio imageY is an image of real numbers instead
of integers. If both Xi and Xj are 8 bit images, the
possible maximum value range of Y is 0, [1/255, 1],
(1, 255]. Instead of amuch simpler notation, [0, 255],
we deliberatelywrite the value range in such away to
emphasize that the value range [1/255, 1] may con-
tain just as much information as that in the much
wider value range (1, 255]! A popular approach for
displaying a ratio image on an 8 bit per pixel per
channel display system is to scale the image into a

0–255 DN range; many image processing software
packages may perform the operation automatically.
This might result in up to 50% information loss
because the information recorded in value range
[1/255, 1] could be compressed into a fewDN levels.

If we consider an image ratio as a coordinate
transformation from a Cartesian coordinate system
to a polar coordinate system (Figure 3.3), rather
than a division operation, then

Y ¼ Xi

Xj
¼ tanðaÞ

a ¼ arctan
Xi

Xj

� �
:

ð3:7Þ

Figure 3.2 Multiplication for image modulation: (a) a colour-coded classification image; and (b) the intensity-
modulated classification image

X1

2X

α = arctan(X2/X1)

Figure 3.3 Ratio as a coordinate transformation from a
Cartesian coordinates system to a polar coordinates
system
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Ratio image Y is actually a tangent image of the
angle a. The information of a ratio image is evenly
presented by angle a in value range [0, p/2] instead
of by Y¼ tan(a) in value range [0, 255]. Therefore,
to achieve a ‘fair’ linear scale stretch of a ratio
image, it is necessary to convert Y to a by formu-
la (3.7). A linear scale can then be performed as

b ¼ 255
a�minðaÞ

maxðaÞ�minðaÞ : ð3:8Þ

After all, the above transform may not always be
necessary. Ratios are usually designed to highlight
the target features as high-ratio DNs. In this case,
the direct stretch of ratio image Y may enhance the
target features well but at the expense of the infor-
mation represented by low-ratio DNs. From this

sense and as an example, it is important to notice
that although ratios TM1/TM3 and TM3/TM1 are
reciprocals of one another mathematically and so
contain the same information, they are different in
terms of digital image display! Remember: when
you design a ratio, make sure the target information
is highlighted by high values in the ratio image.

Ratio is an effective technique for selectively
enhancing spectral features. Ratio images derived
from different band pairs are often used to generate
ratio colour composites in an RGB display. For
instance, a colour composite of TM5/TM7 (blue),
TM4/TM3 (green) and TM3/TM1 (red) may high-
light clay minerals in blue, vegetation in green and
iron oxide in red (Figure 3.4). It is interesting to
compare Figure 3.1d with Figure 3.4d to notice the

Figure 3.4 Ratio images and ratio colour composite: (a) the ratio image of TM3/TM1; (b) the ratio image of TM4/TM3;
(c) the ratio image of TM5/TM7; and (d) the ratio colour composite of TM5/TM7 in blue, TM4/TM3 in green and TM3/TM1
in red
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similarity between differencing and ratio tech-
niques for selective enhancement. Many indices,
such as the normalized difference vegetation index
(NDVI), have been developed based on both
differencing and ratio operations.

Ratio is also well known as an effective tech-
nique for suppressing topographic shadows. For a
given incident angle of solar radiation, the radia-
tion energy received by a land surface depends
on the angle between the land surface and the
incident radiation. Therefore, solar illumination
on a land surface varies with terrain slope and
aspect, which results in topographic shadows. In
a remotely sensed image, the spectral information
is often occluded by sharp variations of topograph-
ic shadowing. The DNs in different spectral bands
of a multi-spectral image are proportional to the
solar radiation received by the land surface and its
spectral reflectance. Let DN(l) represent the digi-
tal number of a pixel in an image of spectral band l.
Then

DNðlÞ ¼ rðlÞEðlÞ ð3:9Þ
where r(l) and E(l) are the spectral reflectance
and solar radiation of spectral band l received at
the land surface corresponding to the pixel.

As shown in Figure 3.5, suppose a pixel represen-
ting a land surface facing the Sun receives n times
the radiation energy of that received by another

pixel of land surface facing away from the Sun; then
theDNs of the twopixels in spectral bands i and j are
as follows:

Pixel in shadow: DN1(i)¼ r(i)E(i) and DN1(j)¼
r(j)E(j)
Pixel facing illumination: DN2(i)¼ nr(i)E(i) and
DN2(j)¼ nr(j)E(j).

Thus the ratio between band i and j for both pixels
will be

R1i;j ¼ DN1ðiÞ
DN1ðjÞ ¼

rðiÞEðiÞ
rðjÞEðjÞ

R2i;j ¼ DN2ðiÞ
DN2ðjÞ ¼

nrðiÞEðiÞ
nrðjÞEðjÞ ¼

rðiÞEðiÞ
rðjÞEðjÞ :

ð3:10Þ
Therefore, R1i,j¼R2i,j.

Equations in (3.10) indicate that band ratios
are independent of the variation of solar illumi-
nation caused by topographic shadowing and
are decided only by the spectral reflectance of
the image pixels. The pixels of the objects with
the same spectral signature will result in the same
band ratio values no matter whether they are
under direct illumination or in shadow. Unfortu-
nately, the real situation is more complicated than
this simplified model because of atmospheric
effects that often add different constants to dif-
ferent spectral bands. This is why the ratio tech-
nique can suppress topographic shadows but may
not be able to eliminate their effects completely.
Shadow suppression means losing topography
that often accounts for more than 90% informa-
tion of a multi-spectral image; ratio images there-
fore reduce SNRs significantly.

3.5 Index derivation and supervised
enhancement

Infinite combinations of algebraic operations can
be derived from basic arithmetic operations and
algebraic functions. Aimless combinations of alge-
braic operations may mean an endless and poten-
tially fruitless game; that is, you may spend a very
long time without achieving any satisfactory result.
Alternatively, you may happen upon a visually

Solar radiation

DN1 DN2

Figure 3.5 Principle of shadow suppression function of
ratio images
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impressive image without being able to explain or
interpret it. To design a meaningful and effectively
combined operation, knowledge of the spectral
properties of targets is essential. The formulae
should be composed on the basis of spectral or
physical principles, and designed for the enhance-
ment of particular targets; these are then referred to
as spectral indices, such as the NDVI. An index can
be considered as supervised enhancement. Here we
briefly introduce a few commonly used examples of
indices based on Landsat TM/ETMþ image data.
You may design your own indices for a given image
processing task based on spectral analysis. In Part
Three of this book, youwill find several examples of
this kind of supervised enhancement in the teaching
and research case studies.

3.5.1 Vegetation indices

As shown in Figure 3.6, healthy vegetation has a
high reflection peak in the NIR and an absorption
trough in the red. If we could see NIR, vegetation
would be NIR rather than green. This significant
difference between red and NIR bands is known as
the red edge: it is a unique spectral property that
makes vegetation different from all other ground
objects. Obviously, this diagnostic spectral feature
of vegetation can be very effectively enhanced by
differencing and ratio operations. Nearly all the
vegetation indices are designed to highlight the red
edge in one way or another.

The NDVI is one of the most popular vegetation
indices:

NDVI ¼ NIR�Red

NIR þ Red
: ð3:11Þ

This index is essentially a difference between the
NIR and red spectral band images. The summa-
tion of NIR and red in the denominator is a factor
to normalize the NDVI to a value range [�1,1].

The NDVI for TM imagery is

Y ¼ TM4� TM3

TM4 þ TM3
: ð3:12Þ

Vegetation can also be enhanced using a ratio
index:

Y ¼ NIR�minðNIRÞ
Red�minðRedÞþ 1

ð3:13Þ

and so for TM images

Y ¼ TM4�minðTM4Þ
TM3�minðTM3Þþ 1

: ð3:14Þ

The effect of the subtraction of the band minimum
is roughly to remove the added constants of
atmospheric scattering effects (refer to the recomm-
ended remote sensing textbooks) so as to improve
topography suppression by ratio. The value of 1
added to the denominator is to avoid a zero value.
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Figure 3.6 Image spectral signatures of vegetation, red soil and clay minerals
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Figure 3.7 illustrates these vegetation indices de-
rived from TM images.

3.5.2 Iron oxide ratio index

Iron oxides and hydroxides are some of the most
commonly occurring minerals in the natural envi-
ronment. They appear as red or reddish brown to the
naked eye, because of high reflectance in the red
and absorption in the blue (Figure 3.6). Typical red
features on land surfaces, such as red soils, are

closely associated with the presence of iron-bearing
minerals. We can enhance iron oxides using the
ratio between the red and blue spectral band images
(Figure 3.8a):

Y ¼ Red�minðRedÞ
Blue�minðBlueÞþ 1

: ð3:15Þ

For TM imagery

Y ¼ TM3�minðTM3Þ
TM1�minðTM1Þþ 1

: ð3:16Þ

Figure 3.7 (a) Landsat TM NDVI; and (b) vegetation ratio images

Figure 3.8 Images of (a) TM iron oxide ratio index; and (b) TM clay mineral ratio index
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3.5.3 TM clay (hydrated) mineral ratio index

Clay minerals are characteristic of hydrothermal
alteration in rocks and are therefore very useful
indicators for mineral exploration using remote
sensing. The diagnostic spectral feature of clay
minerals, which differentiates them from unaltered
rocks, is that they all have strong absorption in the
spectral range around 2.2 mm (corresponding to TM
band 7) in contrast to high reflectance in the spectral
range around 1.6 mm (corresponding to TM band 5)
as shown in Figure 3.6. Thus clay minerals can be
generally enhanced by the ratio between these two
SWIR bands (Figure 3.8b):

Y ¼ TM5�minðTM5Þ
TM7�minðTM7Þþ 1

: ð3:17Þ

This index can only achieve a general enhancement
of all clay minerals using TM or ETMþ images.
ASTER imagery, on the other hand, offers five
SWIR bands and enables more specific discrimina-
tion of different clay minerals (though still not
specific identification). You might try to design
ASTER indices to target various clay minerals by
yourselves.

3.6 Standardization and
logarithmic residual

A typical example of a combined algebraic opera-
tion is the so-called standardization:

Yi ¼ Xi

1
k

Pk
l¼1

Xl

ð3:18Þ

where Xi represent the band i image, Yi the stan-
dardized band i image and k the total number of
spectral bands.

This ratio-type operation can suppress topo-
graphic shadows based on the same principle as
explained in Section 3.4. The denominator in the
formula is the average image of all the bands of a
multi-spectral image; this allows the ratio for every
band to be produced using the same divisor. The
standardization enables the spectral variation among
different bands, at each pixel, to be better enhanced
using the ratio to the same denominator.

If we consider (3.18) as an arithmetic-mean-
based standardization then another technique called
the logarithmic residual (Green and Craig, 1985)
can be considered as a geometric-mean-based stan-
dardization:

lnðRilÞ¼ lnðxilÞ� lnðxi:Þ� lnðx:lÞþ lnðx::Þ ð3:19Þ

where xil is the DN of pixel i in band l,
xi: ¼ðQk

l¼1 xilÞ1=k is the geometric mean of pixel i

over all the k bands, x:l ¼
Qn

i¼1 xil
� �

1/n is the geomet-
ric mean of band l, and x:: ¼ðQn

i¼2

Qk
l¼1 xilÞ1=kn is

the global geometric mean of all the pixels in all the
bands.

Then,

yil ¼ elnðRilÞ ð3:20Þ
where yil is the logarithmic residual of xil.

We can rewrite (3.19) in the following form:

lnðRilÞ ¼ ln
xil
xi:

þ ln
x::
x:l

: ð3:21Þ

The first term in (3.21) has a similar form to (3.18)
but the denominator is a geometric mean instead of
an arithmetic mean for pixel i over k bands. The
second term in (3.21) is equivalent to a band spectral
offset; it is constant for all the pixels in one spectral
band but varies with different spectral bands.

The logarithmic residual technique suppresses
topographic shadows more effectively than other
techniques but the resulting images are not often
visually impressive, even after a proper stretch,
because of their rather low SNR.

3.7 Simulated reflectance

Many image processing techniques have been de-
veloped on the basis of fairly sophisticated physical
or mathematical models but the actual constituent
operations are simple arithmetic operations. Simu-
lated reflectance technique (Liu et al., 1997) is an
example of this type.

3.7.1 Analysis of solar radiation balance
and simulated irradiance

Suppose the solar radiation incident upon a solid
land surface, of unit area equivalent to an image
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pixel, is irradiance E. This energy is partially
reflected and absorbed by the terrain material de-
pending on the reflectance (or albedo) r and ab-
sorptance a:

Mr ¼ rE ð3:22Þ

Ma ¼ aE ð3:23Þ
whereMr is the reflected solar radiation andMa the
absorbed.

Considering the land surface as the surface of a
solid medium of considerable thickness (which is
generally true), and to satisfy the conservation of
energy, we have

rþa ¼ 1: ð3:24Þ
Based on the concept of the radiation balance

(Robinson, 1966) the solar radiation balance, B, on
the Earth is described by

B ¼ Eð1� rÞ�Me

¼ aE�Me

¼ Ma �Me

ð3:25Þ

where Me is the radiation emitted (thermal emis-
sion) from the land surface.

Then,

E ¼ rEþaE ¼ Mr þMa ¼ Mr þMe þB

or

E�B ¼ Mr þMe: ð3:26Þ
A dark (low-albedo) ground object absorbs more

solar radiation energy (mostly in the visible to NIR
spectral region) than a bright (high-albedo) object
and eventually re-emits more thermal radiation
in the thermal spectral region of 8–14 mm because
of the complicated thermodynamic processes with-
in the terrain material. This general complementary
relationship between reflected radiation Mr and
emitted radiation Me from the land surface can be
easily observed in TM or ETMþ images in which
dark subjects in visible band images are bright in
thermal band images and vice versa. The phenom-
enon implies that the sum of Mr and Me, the right
side of Equation (3.26), can be treated roughly as a
constant for a given irradiance E, and therefore is
independent of the spectral properties (albedo) of
the land surface.

Irradiance E varies with topography only. Sup-
pose that the Sun is a ‘parallel’ radiation source to
the Earth with constant incident radiant flux density
Ms; then the solar irradiance upon the land surface,
E, varies with the angle between the land surface
and the incident solar radiation, g . When the land
surface is perpendicular to the incident solar radia-
tionMs, E is at its maximum and equal toMs. If the
solar radiation has an incident angle u1 (from nadir)
and azimuth angle f1, then the irradiance upon a
land surfacewith slope angle u2 and aspect direction
f2 can be calculated as

E ¼ Ms sin g
¼ Ms½sin u1 sin u2 cosðf1�f2Þþ cos u1 cos u2�:

ð3:27Þ
As stated in (3.25), B is dependent on solar irradi-
anceE and is therefore affected by topography in the
same way as (3.27). Thus E�B varies mainly with
topographywhile invariant to land surface albedo r.
We refer to E�B defined by (3.26) as the simulated
irradiance as it behaves like irradiance but with
reduced energy by B.

3.7.2 Simulated spectral reflectance image

For the reflected spectral radiation of a particular
wavelength l, (3.22) becomes

MrðlÞ ¼ rðlÞEðlÞ ð3:28Þ
where l is the spectral wavelength and r(l) the
spectral reflectance, and

E ¼
ð¥
0

EðlÞdl: ð3:29Þ

The albedo r, as the total reflectance, is the integral
of reflected spectral radiation, over the entire spec-
tral range, divided by the irradiance:

r ¼
Ð¥
0 rðlÞEðlÞdl

E
: ð3:30Þ

We define the simulated spectral reflectance of
band l as

rsimðlÞ ¼
MrðlÞ

Mr þMe
¼ rðlÞ EðlÞ

E�B
: ð3:31Þ
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The right side of this equation comprises two
components, the reflectance r(l) and the ratio of
the spectral irradiance of band l to the simulated
irradiance: E(l)/(E�B). This irradiance ratio is
approximately constant for all pixels in the image
band l because both E(l) and E�B vary with
topography in a similar way to that defined by
formula (3.27). An image defined by (3.31) is
therefore directly proportional to the spectral re-
flectance image by a constant factor and, as a result,
topographic features are suppressed.

Similarly, a simulated thermal emittance is de-
fined as

esimðlÞ ¼ MeðlÞ
Mr þMe

¼ MeðlÞ
E�B

: ð3:32Þ

Many airborne sensor systems have both multi-
spectral bands and thermal bands with the same
spatial resolution, such as airborne thematicmapper
(ATM) images. In this case the simulated reflec-
tance can be derived from these bands without
degrading the spatial resolution. For ATM images,
Me is recorded in a broad thermal band ATM11
(8–14mm) and Mr is split and recorded into 10
reflective spectral bands ATM1–ATM10. A simulat-
ed panchromatic band image Mr can therefore be
generated as the weighted sum of the 10 reflective
spectral bands:

Mr ¼
X10
i¼1

wiATMi:

The weights wi can be calculated either from the
sensor gain factors and offsets, or using the solar
radiation curve and the spectral bandwidths, as
described later.

Thus, based on Equation (3.31), we have an ATM
simulated reflectance image

rsimðlÞ ¼
MrðlÞ
E�B

¼ ATMl

ATM11þ P10
i¼1 wiATMi

ð3:33Þ
where l¼ 1–10.

And a broadband thermal emittance image (esim)
for ATM is given by

esim ¼ Me

E�B
¼ ATM11

ATM11þ P10
i¼1 wiATMi

: ð3:34Þ

Similarly, we can derive the simulated reflec-
tance/emittance images for Landsat TM, ETMþ
and ASTER datasets but with degraded spatial
resolution because the thermal band resolution of
these sensor systems is significantly lower than
that of reflective multi-spectral bands.

The TM simulated reflectance/emittance is

TMsim r eðlÞ ¼ TMl

TM6þ P1�5;7
i¼1 wiTMi

ð3:35Þ

where TMsim r e is the simulated reflectance rsim(l)
for l¼ 1–5,7 and simulated emittance esim(l) for
l¼ 6.

For ETMþ images we can use the same formula
as above. We can also use the panchromatic band
(ETMþ Pan) image to replace bands 2, 3 and 4 as
the spectral range of the ETMþ Pan covers the
same range of these three bands.

The ASTER simulated reflectance/emittance is

ASTERsim r eðlÞ

¼ ASTERlP9
i¼1 wiASTERiþ

P14
j¼10 wjASTERj

ð3:36Þ
where ASTERsim_r_e is the simulated reflectance
rsim(l) for l¼ 1–9 and simulated emittance esim(l)
for l¼ 10–14.

3.7.3 Calculation of weights

As described above, the simulated panchromatic
ATM image is generated from aweighted sum of all
the spectral bands of the ATM. In practice, this
involves image pre-processing and calculation of
weights and it can be carried out in various ways:

1. The standard decalibration procedure to convert
the image DN in each spectral band to radiance
using sensor gain and offset,

Radiance ¼ DN

Gain
�Offset:

The same conversion should also be performed
on the thermal band. Careful atmospheric
correction is needed before the summation is
implemented.
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2. Use of the solar radiation curve (Figure 3.9) to
calculate the weights. The average height of a
spectral band in the solar radiation curve is mea-
sured and then multiplied by the bandwidth. The
product, after rescaling to a percentage based on
the summation of the products for all spectral
bands, is the weight for the band. Each image
band should be linearly stretched with a proper
cut-off at both high and low ends of the histogram
before the weight is applied. This stretch roughly
removes the effects of atmospheric scattering and
makes effective use of the whole DN range of the
image (0–255 for 8 bit data). With all the image
bands having the sameDN range after the stretch,
the weights calculated from the solar radiation
curve can then be applied to all bands on an equal
basis. The resultant simulated panchromatic im-
age should, in principle, be further rescaled to
optimize the albedo cancellation in the summa-
tionwith the thermal band image so as to generate
the simulated irradiance image (the denominator
of Equation (3.34)). A real irradiance image
should represent variation in topography only,
without the influence of albedo. Effective cancel-
lation of albedo in the simulated irradiance image
is the key factor for retaining albedo information
in the subsequent simulated reflectance image. In
practice, the weights can be modified arbitrarily
to achieve enhancement of particular spectral
features. Tables 3.1 and 3.2 gives the weights of
the ATM and ETMþ bands.

3.7.4 Example: ATM simulated reflectance
colour composite

Figure 3.10 shows a colour composite of ATM
bands 9, 4 and 2 in red, green and blue (a) and the
simulated reflectance colour composite of the
same bands (b). The normal colour composite was
prepared using the BCET for optimum colour pre-
sentation. For the simulated reflectance colour com-
posite, all image bands were linearly stretched with
clipping at the both ends of the image histograms to
make full use of the 8 bit (0–255) value range and
then the weights in Table 3.1 were applied. The
resultant simulated reflectance images were linear-
ly rescaled to 0–255 for colour display.

The colour composite of ATM bands 9, 4 and
2 is generally good for visual interpretation of
rock types, alteration minerals and soil/regolith.
Figure 3.10 gives the overall impression that the
simulated reflectance colour composite (b) has a
very similar colour appearance to the normal colour
composite (a) but with topography suppressed. This
general similarity makes the visual interpretation
easy since the image colours relate directly to
spectral signatures. Further examination indicates
that the simulated reflectance image has more spec-
tral (colour) variations than the normal colour com-
posite. In the simulated reflectance colour compos-
ite, the main contribution to image contrast is given
by spectral variation rather than topography. This
enables the spectral features within very light or
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Figure 3.9 Solar spectral irradiation at sea level. After Fraster (1975)
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very dark (low-albedo or topographic shadow) areas
to be enhanced effectively.

3.7.5 Comparison with ratio and logarithmic
residual techniques

As mentioned before, many techniques, such as
ratio, standardization and logarithmic residual, have
been developed to enhance information relating
to the spectral reflectance of ground objects by
suppressing topographic shadowing. All these tech-
niques suffer the limitation that albedo variation
is suppressed together with topographic shadow.
These techniques cannot, therefore, effectively dif-
ferentiate objects with similar spectral profiles but
different albedos, such as separation between black
and grey. This is because they involve ratio-type
operations either between the spectral reflectance of
different bands or between band spectral reflectance
and albedo.

Ratio : Ri;j ¼ BandðiÞ
BandðjÞ ¼

rðiÞEðiÞ
rðjÞEðjÞ :

The spectral irradiance ratioE(i)/E(j) is constant for
any pixel in the image so that topographic shading is
removed. The reflectance ratio r(i)/r(j) varies with
the spectral signatures of the pixels but cancels out
albedo variation because a high-albedo object will
have a similar reflectance ratio to that of a low-
albedo object if the two have similar spectral pro-
files. In otherwords, the band ratio technique cannot
separate albedo from irradiance on the land surface
and, consequently, the method suppresses the vari-
ation of both.

Logarithmic Residual: Formula (3.19) of loga-
rithmic residual operation can be rewritten as

Ril ¼ xil=xi�
x� l=x��

¼ riðlÞEiðlÞ=riEi

r � ðlÞEðlÞ=r��E
ð3:37Þ

where,

ri(l) is the spectral reflectance of band l of pixel i
ri is the albedo of pixel i
r � ðlÞ is the average reflectance of the spectral
band l
r�� is the average albedo of the whole image
and the other variables are as defined in (3.19).Ta
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The irradiance ratio Ei(l)/Ei is constant for all
pixels and thus independent of position i,

EiðlÞ
Ei

¼ EðlÞ
E

:

Thus Equation (3.37) can be simplified as

Ril ¼ r��
r� ðlÞ �

riðlÞ
ri

: ð3:38Þ

Formula (3.38) is irrelevant to irradiance and so
topographic shadows are therefore eliminated by
logarithmic residual processing. This formula is ac-
tually a product of two ratios: the ratio of the average
albedo of the whole image against the average
reflectance of spectral band l, r�� =r� ðlÞ; and the
ratio of pixel spectral reflectance and pixel albedo,
riðlÞ=ri. The ratio r�� =r � ðlÞ is independent of
position and constant for all the pixels in the band
l logarithmic residual image. The variation in a
logarithmic residual image is therefore controlled
only by the ratio ri(l)/ri. In a similar way to ratio
images, this ratio cancels the variation of albedo.

The advantage of the simulated reflectance tech-
nique is that it does not involve ratio operations
between spectral reflectances or between spectral
reflectances and albedo. By using the thermal band
image to generate a simulated irradiance component,
the simulated reflectance technique suppresses topo-
graphic shadowsbutretainsalbedoinformation.Thus
the spectral information can be better enhanced.

3.8 Summary

In this chapter, we learned about simple arithmetic
operations between images and discussed their
main applications in image spectral enhancement.
The key point to understand is that all image
algebraic operations are point based and performed
among the corresponding pixels in different images
without the involvement of neighbouring pixels.We
can therefore regard algebraic operations as multi-
image point operations.

Amajor application of image algebraic operations
is theselectiveenhancementof thespectral signatures

Figure 3.10 (a) The colour composite of ATM bands 9, 4 and 2 in red, green and blue; and (b) the simulated
reflectance colour composite of ATM bands 9, 4 and 2
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of intended targets in a multi-spectral image. For
this purpose, investigating the spectral properties of
these targets is essential to the composition of effec-
tive algebraic operations; random attempts are un-
likely to be fruitful. This procedure, from spectral
analysis to composing an algebraic formula, is gen-
erallyreferredtoassupervisedenhancement. Ifsucha
formula is not image dependent and so can bewidely
used, it is called an index image; for instance, the
NDVI is a very well-known vegetation index image.

One important issue for spectral enhancement is
the suppression of topographic shadowing effects.
The ratio-based techniques, standardization and log-
arithmicresidual,arebasedonnumericalcancellation
of variations in solar illumination. The results are
related to ratios of spectral reflectance between dif-
ferentbandswhilevariationinalbedowillberemoved
togetherwith topography. The simulated reflectance,
in contrast, which is based on a simplified physical
model of solar radiation on the land surface, repre-
sents all the properties of true spectral reflectance,
including albedo, with only a constant difference.

Questions

3.1 Why is an image algebraic operation also
known as a multi-image point operation?
Write down the mathematical definition of
the multi-image point operation.

3.2 Why can image addition improve the image
SNR? If nine photographs of the same scene
are taken, using a stationary camera under
identical illumination conditions, and then
summed to generate an average image, by
how many times is the SNR is improved in
comparison with any individual picture?

3.3 Describe image difference (subtraction) and
ratio (division) operations and then compare
the two techniques in terms of change detec-
tion, selective enhancement and processing
efficiency.

3.4 How important are the weights in image sub-
traction? Suggest a suitable pre-processing
technique for image differencing.

3.5 Why does image differencing decrease the
SNR?

3.6 Describe image multiplication and its main
application.

3.7 Explain the characteristics of thevalue range of
a ratio image. Do you think that two reciprocal
ratio images contain the same information
when displayed after linear scale and, if so,
why?

3.8 Using a diagram, describe a ratio image in
terms of a coordinate transformation between
Cartesian and polar coordinates.

3.9 Explain the principles of topographic suppres-
sion using the image ratio technique.

3.10 What is NDVI and how is it designed?
3.11 Describe the design and functionality of the

Landsat TM or ETMþ iron oxide and clay
indices.

3.12 Try the normalized differencing approach,
similar to NDVI, to enhance iron oxide and
clay minerals. Compare the results with the
relevant ratio indices and explain why the
ratio-based indices are more effective for
these two minerals. (Key: The red edge signal
for vegetation is much stronger than the dif-
ference between red and blue for iron oxide
between the SWIR bands for clay minerals.)

3.13 Describe and compare the standardization and
logarithmic residual techniques and their
functionalities.

3.14 What is simulated reflectance? What is the
essential condition for the derivation of a
simulated reflectance image?

3.15 Referring to the physical model for the deriva-
tionofsimulatedreflectance,explainwhy it can
be regarded as a true simulation of reflectance.

3.16 What are the major advantages of simulated
reflectance over the ratio, standardization and
logarithmic residual techniques?
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4
Filtering and Neighbourhood Processing

Filtering is a very important research field of digital
image processing. All filtering algorithms involve
so-called neighbourhood processing because they
are based on the relationship between neighbouring
pixels rather than a single pixel in point operations.

Digital filtering is useful for enhancing linea-
ments that may represent significant geological
structures such as faults, veins or dykes. It can
also enhance image texture for discrimination of
lithologies and drainage patterns. For land-use
studies, filtering may highlight the textures of
urbanization, road systems and agricultural areas
and, for general visualization, filtering is widely
used to sharpen images. However, care should be
taken because filtering is not so ‘honest’ in retaining
the information of the original image. It is advisable
to use filtered images in close reference to colour
composite images or black and white single band
images for interpretation.

Digital filtering can be implemented either by
‘box filters’ based on the concept of convolution in
the spatial domain or using the Fourier transform
(FT) in the frequency domain. In the practical
applications of remote sensing, convolution-based
box filters are the most useful for their computing
efficiency and reliable results. In giving a clear
explanation of the physical and mathematical
meanings of filtering, the FT is essential for
understanding the principle of convolution. The FT
is less computationally efficient for raster data, in
terms of speed and computing resources, but it is

more versatile than convolution in accommodating
various filtering functions.

For point operations, we generally regard an
image as a raster data stream and denote xij2X as
a pixel at line i and column j in imageX. As the pixel
coordinates in an image are irrelevant for point
operations, the subscripts ij are not involved in the
processing and can be ignored. For filtering and
neighbourhood processing, however, the pixel
coordinates are very relevant and, in this sense, we
regard an image as a 2D function. We therefore
follow the convention of denoting an image with a
pixel at image column x and line y as a 2D function
f(x, y), when introducing essential mathematical
concepts of filtering in this chapter. On the other
hand, for simplicity, the expression of xij2X is still
used in describing some filters and algorithms.

4.1 Fourier transform:
understanding filtering
in image frequency

The information in an image can be considered as the
spatial variations at various frequencies or the as-
sembly of spatial information of various frequencies
as illustrated in Figure 4.1. Smooth, gradual tonal
variations represent low-frequency information
while sharp boundaries represent high-frequency
information. TheFTis a powerful tool for converting
image information from the spatial domain into the
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frequency domain. Filtering can thus be performed
on selected frequencies and this is particularly useful
for removing periodical noise, such as that induced
by scanning lines.

Firstly, let us try to understand the physical
meaning of the FT based on a simple optical
filtering system before we start the slightly boring
mathematics. As shown in Figure 4.2, it is a so-
called 4f optical system. The f is the focal length of
the lens performing the FT and inverse Fourier
transform (IFT). Given an image f(x, y), where x
and y are the spatial coordinates of pixel position,
the first lens performs an FT to transform f(x, y),
at its front focal plane, to a Fourier transformation
F(u, v), a frequency spectrum with frequencies u in
the horizontal and v in the vertical direction, at its
rear focal plane. The second lens then performs an
IFT to transform F(u, v) at its front focal plane back
to the image at its rear focal plane but with a 180�

rotation f(�x, �y). Figure 4.3 shows an image
(a) and its FT spectrum plane (b); the frequency
increases from zero at the centre of the spectrum
plane to higher and higher frequencies towards the
edge of the plane. If a filter (mask)H(u, v) is placed

at the rear focal plane of the FT lens, to mask off the
signals of particular frequencies in F(u, v), which is
equivalent to the operation F(u, v)H(u, v), then a
filtered image g¼ f(�x, �y)�h(x, y) (with 180�

rotation) is produced, as shown in Figure 4.2b. Such
an optical FT system can perform filtering very
efficiently and with great flexibility since the filter
can be designed in various arbitrary shapes which
are very difficult or impossible to define by mathe-
matical functions. Unfortunately, such an analogue
approach is limited by the requirements of delicate
and expensive optical instruments and very strict
laboratory conditions. On the other hand, with
rapid progress in computing technology and the
development of the more efficient and accurate fast
Fourier transform (FFT) algorithms, frequency do-
main filtering has become a common function for
most image processing software packages.

From the illustration in Figure 4.2, we know that
the FT-based filtering has three steps:

1. FT to transfer an image into the frequency domain.
2. Remove or alter the data of particular frequen-

cies using a filter.

Figure 4.2 Optical Fourier transform system for filtering

Figure 4.1 An image can be considered as an assembly of spatial information at various frequencies
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3. IFT to transfer the filtered frequency spectrum
back to the spatial domain to produce a filtered
image.

Suppose f(x, y) is an input image andF(u, v) is the
2DFTof f(x, y); then the continuous (C) forms of the
2D FT and IFT are

C2DFT Fðu;vÞ ¼
ðþ¥

�¥

ðþ¥

�¥
f ðx;yÞe�i2pðuxþvyÞdxdy

ð4:1Þ

C2DIFT f ðx;yÞ ¼
ðþ¥

�¥

ðþ¥

�¥
Fðu;vÞei2pðuxþvyÞdudv

ð4:2Þ
where i¼ ffiffiffiffiffiffiffi�1

p
.

The discrete (D) forms are

D2DFT Fðu; vÞ ¼ 1

n

Xn�1

x¼0

Xn�1

y¼0

f ðx; yÞe�i2pðuxþ vyÞ=n

ð4:3Þ

D2D IFT f ðx; yÞ ¼ 1

n

Xn�1

u¼0

Xn�1

v¼0

Fðu; vÞei2pðuxþ vyÞ=n

ð4:4Þ
where n is the calculation window size.

The operations of the FT and IFT are essentially
the same but one is from the image domain to the
frequency domain and the other from the frequency
domain to the image domain. An important property
of the FT is known as the convolution theorem.

It states that if F andH are the Fourier transforms of
function f and h, then the Fourier transform of the
convolution f �h is equal to the product of F and H:

FTðf � hÞ ¼ FTðf ÞFTðhÞ ¼ FH: ð4:5Þ
The inverse form is

f � h ¼ IFT½FTðf ÞFTðhÞ� ¼ IFTðFHÞ ð4:6Þ
or

G¼FH for g¼ f �h and G¼FTðgÞ: ð4:7Þ
This is the key concept of filtering based on the

FT. F is the frequency representation of the spatial
information of image f. IfH is a filtering function to
change the power of particular frequencies or make
them zero, the formula (4.6) performs the filtering
that changes or removes these frequencies and
produces a filtered image g¼ f � h.

4.2 Concepts of convolution
for image filtering

From the convolution theorem, we know that the
image filtering using the FT is equivalent to a
convolution between an image f(x, y) and a function
h(x, y) that is usually called the point spread
function (PSF). A 2D convolution is defined as

gðx; yÞ ¼ f ðx; yÞ � hðx; yÞ

¼
Z Z

f ðu; vÞhðx�u; y�vÞdudv:
ð4:8Þ

Figure 4.3 (a) An image f(x, y) and (b) its FT frequency spectrum F(u, v)
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Comparing (4.8) with the convolution theo-
rem (4.6), it is clear that filtering in the image
domain by a PSF defined as h(x, y) is equivalent
to that in the frequency domain by a frequency
filtering function H(u, v). The h(x, y) is actually
the FT or the ‘image’ of the frequency filtering
function H(u, v). Filtering can therefore be per-
formed directly in the image domain by convolution
without involving time-consuming FTs and IFTs, if
the image presentation of a frequency filter can be
found. For many standard frequency filtering func-
tions, such as high-pass and low-pass filters, their
images can be derived easily by the IFT, as illus-
trated in Figure 4.4. It is clear then that convolution
is a shortcut for filtering operations.

In the case of discrete integer digital images, the
integral form of (4.8) becomes a summation:

gðx; yÞ ¼
Xþ¥

u¼�¥

Xþ¥

v¼�¥
f ðu; vÞhðx� u; y� vÞ: ð4:9Þ

If the range overwhich the PSF h(x, y) is non-zero
is (�w, þw) in one dimension and (�t, þ t) in the
other, then Equation (4.9) can be written as

gðx; yÞ ¼
Xxþw

u¼x�w

Xyþ t

v¼y�t

f ðu; vÞhðx� u; y� vÞ: ð4:10Þ

In digital image filtering, w and t are the half size
of a filter kernel in the horizontal and vertical
directions. The pixel of a filtered image, g(x, y), is
created by a summation over the neighbourhood
pixels f(u, v) surrounding the input image pixel
f(x, y) weighted by h(x� u, y� v).

As explained before, the filter kernel, or the PSF
h(x, y), is a matrix or the image of a frequency filter
H(u, v) according to the convolution theorem (4.6).
The numbers in a filter kernel h(x, y) are theweights
for summation over the neighbourhood of f(x, y).
For the whole image, the convolution filtering is
performed by shifting the filter kernel, pixel by
pixel, to apply (4.10) to every pixel of the image
being filtered. Although the kernel size may be
either an odd number or even number, an odd
number is preferred to ensure the symmetry of the
filtering process. A kernel of even-number size
results in a half pixel shift in the filtering result.
Commonly used filter kernel sizes are 3� 3, 5� 5
or 7� 7. Rectangular kernels are also used accord-
ing to particular needs.

Convolution is the theoretical foundation of
image domain or spatial filtering, though many
spatial filters are not necessarily based on the
mathematical definition of convolution but on
neighbourhood relationships.

For neighbourhood processing, in either do-
main, the image margins of half the size of the
processing window can either be excluded from
the output or be processed together with a mirror
copy of the half window size block on the inside
of the margins.

4.3 Low-pass filters (smoothing)

Smoothing filters are designed to remove high-
frequency information and retain low-frequency

Figure 4.4 Illustration of low-pass and high-pass frequency filters and their PSFs
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information, thus reducing the noise but at the cost
of degrading image detail. Figure 4.4 illustrates
a typical low-pass filter H(u, v) and the corre-
sponding PSF h(x, y). Most kernel filters for
smoothing involve weighted averages among the
pixels within the kernel. The larger the kernel, the
lower the frequency of information retained.
Smoothing based on averaging is effective for
eliminating noise pixels, which are often distin-
guished by very different DNs from their neigh-
bours, but, on the other hand, the process blurs the
image by also removing the high-frequency infor-
mation. As illustrated in Figure 4.5, an SAR
multi-look image appears noisy because of radar
speckle (Figure 4.5a); the speckle is effectively
removed using a 5� 5 mean filter, so better
revealing the ground features (Figure 4.5b); these
features are blurred when a 9� 9 mean filter is
applied (Figure 4.5c). For removing noise without
burring images, edge-preserved smoothing be-
comes an important research topic of filtering.

The following are examples of 3� 3 low-pass
filter kernels. The size and shape of the kernels can
be varied.

Mean filters:

1

9

1 1 1

1 1 1

1 1 1

0
B@

1
CA 1

5

0 1 0

1 1 1

0 1 0

0
B@

1
CA :

Weighted mean filters:

1

16

1 2 1

2 4 2

1 2 1

0
B@

1
CA 1

6

0 1 0

1 2 1

0 1 0

0
B@

1
CA :

4.3.1 Gaussian filter

A Gaussian filter is a smoothing filter with a 2D
Gaussian function as its PSF:

Gðx; yÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp � x2 þ y2

2s2

� �
ð4:11Þ

where s is the standard deviation of the Gaussian
function.

Figure 4.6 presents the PSF of Gaussian filters
withs¼ 0.5, 1.0 and 2.0. TheGaussian function is a

Figure 4.6 Three-dimensional representations of Gaussian filters with different s values

Figure 4.5 (a) Original image; (b) 5� 5 mean filter result; and (c) 9� 9 mean filter result
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continuous function. For discrete raster images, the
Gaussian filter kernel is a discrete approximation
for a given s. For s¼ 0.5, a Gaussian filter is
approximated by a 3� 3 kernel as

Gs¼0:5 ¼
0:0113 0:0838 0:0113

0:0838 0:6193 0:0838

0:0113 0:0838 0:0113

0
BB@

1
CCA:

Obviously, it is essentially a weighted mean filter.

4.3.2 The k nearest mean filter

This involves the reassignment of the value of a
pixel xij of image X to the average of the k
neighbouring pixels in the kernel window whose
DNs are closest to that of xij. A typical value of k
is 5 for a 3� 3 square window. This approach
avoids extreme DNs, which are likely to be noise,
and ensures their removal. On the other hand, if
the pixel in the kernel window is an edge pixel,
taking the average of k nearest DNs is more like to
preserve the edge. The k nearest mean is therefore
an edge-preserving smoothing filter. As shown in
Figure 4.7a, the central pixel 0 is very likely to
represent noise. The five DNs nearest to 0 are 0,
54, 55, 57 and 58 and the mean is 44.8. The
suspected noise DN, 0, at the central pixel is then
replaced with the k nearest mean 44.8 that is
nearer to 0 than the average 53.4 produced by
a mean filter. For the case in Figure 4.7b, the
central pixel DN 156 is replaced with 158.6, the k
nearest mean of 156, 155, 159, 161 and 162. As
158.6 is much nearer to 156 than the average 113
produced by a mean filter, the edge between the
pixels in the DN range of 54–58 and those in
155–162 is better preserved and the image is less
blurred.

4.3.3 Median filter

Here the value of a pixel xij of image X is reassigned
to the median DN of its neighbouring pixels in
a kernel window (e.g. 3� 3). We use the same
examples in Figure 4.7 to explain.

For image template (a), theDNs are ranked: 0, 54,
55, 57, 58, 61, 63, 65, 68; the median in this
neighbourhood is 58. The central pixel 0, a sus-
pected isolated noise pixel, is replaced by the
median 58 which is a reasonable estimate based
on the neighbouring pixels.

For image template (b), the DNs are ranked:
54, 55, 57, 58, 155, 156, 159, 161, 162; the central
DN 156 is replaced with the median value 155
which is very close in value to the original DN.
Thus the sharp edge between pixels with DNs in
range of 54–58 and those with DNs ranging from
155 to 162 is preserved. If a mean filter were used,
the central pixel DN would be replaced by a value
of 113 which is significantly lower than the original
DN 156 and, as a result, the edge would be blurred.
The median filter is therefore an edge-preserving
smoothing filter.

In summary, the median filter can remove
isolated noise without blurring the image too
much. Median filtering can be performed in the
vertical or horizontal direction, if the filter win-
dow is one line or one column width instead of a
square box.

4.3.4 Adaptive median filter

The adaptive median filter is designed from the
basic principle of the median filter as follows:

Median1 Median2 Median3

x x x

X x X x X
x x x

It involves the reassignment of the value of a pixel
xij of image X to the median of the above three
medians in its 3� 3 neighbourhood. This filter is
unlikely to change theDNof a pixel if it is not noise
and thus is very effective for edge preservation.

(b)(a)

1555855

15915657

16216154

655855

63057

686154

Figure 4.7 Two image templates in a 3� 3 kernel
window to illustrate the effects of edge-preserving filters:
(a) a template with a noise pixel 0; and (b) a template
with an edge between DNs of 54–58 and 155–162
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Using the same examples in Figure 4.7, for image
template (a), we have

Median1 Median2 Median3

55 65 58
0 57 0 63 0

54 68 61

Thus, Median1¼ 55, Median2¼ 58 andMedian3¼
0, and the median of these three medians is 55; thus
the central DN 0 is replaced with 55 and the isolated
noise is removed.

For image template (b), we have

Median1 Median2 Median3

55 155 58
156 57 156 159 156

54 162 161

Here, Median1¼ 155, Median2¼ 156 and Medi-
an3¼ 156, and the median of these three medians is
156; thus the central DN 156 remains unchanged
and the edge is preserved. It is clear this is a strong
edge-preserving smoothing filter. Larger window
sizes can also be used with the adaptive median
filter.

4.3.5 The k nearest median filter

The design of this filter combines the principles of
the k nearest mean filter and the median filter. It
involves the reassignment of the value of a pixel xij
of imageX to themedian of the k neighbour pixels in
the kernel window whose DNs are closest to that of
xij. A typical value of k is 5 for a 3� 3 square
window. Taking the same example in Figure 4.7, for
template (a), the five nearest DNs to the central pixel
0 are: 0, 54, 55, 57 and 58. The suspected noise DN,
0, at the central pixel is then replaced with the k
nearest median 55. This is a more reasonable re-
placement value and is closer to the neighbourhood
of xij than 44.8 generated by the k nearest mean
filter. For template (b), the five nearest DNs to the
central pixel 156 are: 155, 156, 159, 161 and 162.

Thus the central pixel DN 156 is replaced by 159.
The k nearest median filter is more effective for
removing noise and preserving edges than the k
nearest mean filter.

4.3.6 Mode (majority) filter

This is a rather ‘democratic’ filter. A pixel value is
reassigned to the most popular DN among its
neighbourhood pixels. This filter performs smooth-
ing based on the counting of pixels in the kernel
rather than numerical calculations. Thus it is suit-
able for smoothing images of non-sequential data
(symbols) such as classification images or other
discrete raster data. For a 3� 3 kernel, the recom-
mendedmajority number is 5. If there is nomajority
found within a kernel window, then the central pixel
in the window remains unchanged.

For example:

6 6 6
6 2 6
5 5 6

There are six pixels here with DN¼ 6, therefore the
central DN 2 is replaced by 6. For a classification
image, the numbers in this window are the class
numbers and their meaning is no different to class
symbols A, B and C. If we use a mean filter, the
average of the DNs in the window will be 5.3, but
class 5.3 has no meaning in a classification image!

4.3.7 Conditional smoothing filters

Filters of this type have the following general form:

If (some condition)
Apply filter 1

Else
Apply filter 2

Endif

Typical examples of this type of filters are noise
cleaning filters. These filters are all designed based
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on the assumption that a bad pixel, a bad line or a
bad column (data missing or CCD malfunction) in
an imagewill have significantly different DNs from
its neighbourhood pixels, lines or columns.

Consider a 3� 3 window neighbourhood of
pixel xij:

xi�1;j�1 xi�1;j xi�1;jþ 1

xi;j�1 xi;j xi;jþ 1

xiþ 1;j�1 xiþ 1;j xiþ 1;jþ 1:

Clean pixels filter
The difference between a bad pixel and the mean of
either of its two alternative neighbourhood pixels
will be greater than the difference between the two
neighbourhood means and thus can be identified
and replaced by the mean of its four nearest pixels:

AVE1 ¼ 1

4
ðxi�1;j�1þxiþ1;jþ1þxiþ1;j�1þxi�1;jþ1Þ

AVE2 ¼ 1

4
ðxi�1;jþxiþ1;jþxi;j�1þxi;jþ1Þ

DIF ¼ jAVE1�AVE2j:
If : jxi;j�AVE1j>DIFandjxi;j�AVE2j>DIF
then : yi;j ¼AVE2

otherwise: yi;j ¼ xi;j:

Clean lines filter
If an image has a bad line, the difference between a
pixel in this line and the mean of either the line
above or below within the processing window will
be greater than the difference between the means of
these two lines. Then the bad line pixel can be
replaced by the average of the pixels above and
below it. As such, a bad line is replaced by the

average of the image line above and below it.
Figure 4.8 illustrates the effects of the filter:

AVE1 ¼ 1

3
ðxi�1;j�1 þ xi�1;j þ xi�1;jþ 1Þ

AVE2 ¼ 1

3
ðxiþ 1;j�1 þ xiþ 1;j þ xiþ 1;jþ 1Þ

DIF ¼ jAVE1�AVE2j

If : jxi;j�AVE1j>DIFandjxi;j�AVE2j>DIF
then : yi;j ¼ ðxi�1;j þ xiþ 1;jÞ=2
otherwise: yi;j ¼ xi;j:

Clean columns filter
This filter is designed with the same logic as the
above but in the vertical direction:

AVE1 ¼ 1

3
ðxi�1;j�1 þ xi;j�1 þ xiþ 1;j�1Þ

AVE2 ¼ 1

3
ðxi�1;jþ 1 þ xi;jþ 1 þ xiþ 1;jþ 1Þ

DIF ¼ jAVE1�AVE2j
If : jxi;j�AVE1j>DIFandjxi;j�AVE 2j>DIF
then : yi;j ¼ ðxi;j�1 þ xi;jþ 1Þ=2
otherwise: yi;j ¼ xi;j:

4.4 High-pass filters
(edge enhancement)

Edges and textures in an image are typical examples
of high-frequency information. High-pass filters
remove low-frequency image information and
therefore enhance high-frequency information such

Figure 4.8 (a) An airborne thematic mapper (ATM) image is contaminated by several bad lines as the result of
occasional sensor failure; and (b) the bad lines are successfully removed by the clean lines filter
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as edges. Most commonly used edge enhancement
filters are based on first and second derivatives or
the gradient and Laplacian. Given an image f(x, y),

Gradient : rf ¼ qf ðx; yÞ
qx

�iþ qf ðx; yÞ
qy

�j ð4:12Þ

where �i and �j are unit vectors in the x and y
directions;

Laplacian : r2f ¼ q2f ðx; yÞ
qx2

þ q2f ðx; yÞ
qy2

:

ð4:13Þ
It is important to note that the two types of high-

pass filters work in different ways. The gradient is
the first derivative at pixel f(x, y) and as a measure-
ment of DN change rate, it is a vector characterizing
the maximum magnitude and direction of the DN
slope around the pixel f(x, y). The Laplacian, as the
second derivative at pixel f(x, y), is a scalar that
measures the rate of change in gradient. In plain
words, the Laplacian describes the curvature of a
slope but not its magnitude and direction (discussed
again in Section 16.4.2). As shown in Figure 4.9,
a flat DN slope has a constant gradient but zero
Laplacian because the change rate of a flat slope is
zero. For a slope with a constant curvature (an arc
of a circle), the gradient is a variable while the
Laplacian is a constant. Only for a slope with
varying curvature are both gradient and Laplacian
variables. This is why the Laplacian suppresses all
the image features except sharp boundaries where

DN gradient changes dramatically, while gradient
filtering retains boundary as well as slope
information.

An output image of high-pass filtering is usually
no longer in the 8 bit positive integer range and so
must be rescaled based on the actual limits of the
image to 0–255 for display.

4.4.1 Gradient filters

The numerical calculation of gradient based on
Equation 4.12 is a simple differencing between a
pixel under filtering and its neighbour pixels divid-
ed by the distance in between. Gradient filters are
always in pairs to produce the x component (gx) and
y component (gy) or components in diagonal direc-
tions:

gx ¼ f ðx; yÞ�f ðxþ dxÞ
dx

gy ¼ f ðx; yÞ�f ðx; yþ dyÞ
dy

:

ð4:14Þ
For instance, the gradient between a pixel f(x, y)
and its next neighbour on the right f(x þ 1, y) is
gx¼ f(x, y)� f(x þ 1, y); here the increment for
raster data is dx¼ 1 (Figure 4.10a). We present
several of the most commonly used gradient filter
kernels which are based on the principles of the
equations in (4.14), assuming an odd-number
kernel size.

Gradient filters:

gx ¼ ð 0 �1 1 Þ gy ¼
0

�1

1

0
BB@

1
CCA :

Prewitt filters:

�1 0 1

�1 0 1

�1 0 1

0
BB@

1
CCA

�1 �1 �1

0 0 0

1 1 1

0
BB@

1
CCA

or

�1 �1 0

�1 0 1

0 1 1

0
BB@

1
CCA

0 1 1

�1 0 1

�1 �1 0

0
BB@

1
CCA

Direction x

DN

02 f

Constantf

Constantf

Variablef
2

Variablef

Variablef
2

Figure 4.9 Geometric meaning of first and second
derivatives
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Sobel filters:

�1 0 1

�2 0 2

�1 0 1

0
BB@

1
CCA

�1 �2 �1

0 0 0

1 2 1

0
BB@

1
CCA

or

�1 �2 0

�2 0 2

0 2 1

0
BB@

1
CCA

0 2 1

�2 0 2

�1 �2 0

0
BB@

1
CCA :

Themagnitudegm and orientation ga of a gradient
can be computed from gx and gy:

gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q
ga ¼ arctanðgy=gxÞ : ð4:15Þ

If we apply (4.15) to a digital elevation model
(DEM), gm produces a slope map and ga an aspect
map of topography (see also Section 16.4.1).

Figure 4.11 illustrates the results of Sobel filters.
The gx image in (b) enhances the vertical edges

while thegy image in (c) enhances horizontal edges.
A filtered image is no longer a positive integer
image; it is composed of both positive and negative
real numbers as gradient can be either positive or
negative depending on whether the DN is changing
from dark to bright or vice versa.

4.4.2 Laplacian filters

As the second derivative, we can consider the
Laplacian as the difference in gradient. Formula
(4.13) is composed of two parts: the secondary
partial derivative in the x direction and y direction.
We can then rewrite (4.13) as

r2f ¼ r2fx þr2fy: ð4:16Þ
Let’s consider the x direction as shown in

Figure 4.10b:

The gradient at position x�1:

gx�1 ¼ f ðx� 1; yÞ� f ðx; yÞ

Figure 4.11 Illustration of an image (a) and its gx and gy for Sobel filters in (b) and (c)

 )b( )a(

x x+1

f(x,y)

f(x+1,y)
gx

x x+1

f(x,y)

f(x+1,y)

x-1

f(x-1,y)
gx-1

gx

Figure 4.10 (a) Calculation of gradient in x direction gx; and (b) calculation of the x component of the
Laplacian, r2f x
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The gradient at position x :

gx ¼ f ðx; yÞ�f ðxþ 1; yÞ:
Thus we have

r2fx ¼ gx�1�gx ¼ f ðx�1; yÞþ f ðxþ 1; yÞ�2f ðx; yÞ:

Similarly in the y direction, we have

r2fy ¼ gy�1�gy ¼ f ðx; y�1Þþ f ðx; yþ 1Þ�2f ðx; yÞ:

The above two calculation equations can be
translated into a standard Laplacian filter kernel:

0 1 0

1 �4 1

0 1 0

0
BB@

1
CCA:

A more commonly used equivalent form of a
Laplacian filter is

0 �1 0

�1 4 �1

0 �1 0

0
BB@

1
CCA:

If we also consider the diagonal directions, then the
Laplacian filter is modified as

�1 �1 �1

�1 8 �1

�1 �1 �1

0
BB@

1
CCA:

In general, we can consider Laplacian filtering
for raster image data as a summation of all the
differences between a pixel f(x, y) and its neigh-
bouring pixels f(x þ dx, y þ dy):

r2f ¼
X1
dx¼�1

X1
dy¼�1

½f ðx; yÞ� f ðxþ dx; yþ dyÞ�:

ð4:17Þ

The Laplacian filter produces an image of edges
(Figure 4.12). The histogram of such an image
is typically symmetrical about a high peak at zero
with both positive and negative values (Figure
4.12c). It is important to remember that both very
negative and very positive values are edges. As
implied by the Laplacian kernels, if the DN of the
central pixel in the Laplacian kernel is higher than
those of its neighbouring pixels, the Laplacian is
positive, indicating a convex edge; otherwise, if the
central pixel in the Laplacian kernel is lower than
those of its neighbour pixels, the Laplacian is nega-
tive, indicating a concave edge.

4.4.3 Edge-sharpening filters

Increasing the central weight of the Laplacian
filter by k is equivalent to adding k times the
original image back to the Laplacian filtered image.
The resultant image is similar to the original
image but with sharpened edges. The commonly

Figure 4.12 Illustration of an image (a) and its Laplacian filtering result (b) together with a histogram of the
Laplacian image (c)
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used add-back Laplacian filters (also called edge-
sharpening filters) are

0 �1 0
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0 �1 0
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The central weight can be changed arbitrarily to
control the proportion between the original image
and the edge image. This simple technique is popu-
lar not only for remote sensing imagery, but also for
commercial digital picture enhancement of photo-
graphic products.

4.5 Local contrast enhancement

The PSF h(x, y) can be dynamically defined by the
local statistics. In this case, h(x, y) is no longer a
predefined fixed function as in the cases of smoothing,
gradient and Laplacian filters. It varies with f(x, y)
according to image local statistics. This branch of
filtering techniques is called adaptive filtering. Adap-
tive filtering can be used for contrast enhancement,
edge enhancement and edge-preserving smoothing as
well as noise removal.

One typical adaptive filter is the local contrast
enhancement. The purpose of local contrast en-
hancement is to produce the same contrast in every
local region throughout an image. An adaptive
algorithm is employed to adjust parameters of a
point operation function pixel by pixel, based on
local statistics, so as to achieve contrast enhance-
ment. This technique represents the combination of
a point operation and neighbourhood processing.
We therefore introduce it in this chapter rather than
in Chapter 2 on point operations.

The simplest local contrast enhancement is the
local mean adjustment technique. Here we use the
same notation as in Chapter 2 to illustrate better the
processing as a contrast enhancement. Let �xij be the
local mean in some neighbourhood of pixel xij, say a
31� 31 square window centred at (i, j). Then

yij ¼ xij þmo� �xij : ð4:18Þ
This technique adjusts local brightness to the global
mean mo of the image while leaving the local
contrast unchanged. For the whole image, the pro-
cessing may reduce the image global contrast

(standard deviation) but will maintain the average
brightness (global mean).

Let �xij and sij be the local mean and local
standard deviation in some neighbourhood of pixel
xij; then a local contrast enhancement algorithm
using a linear function is defined as follows:

yij ¼ �xij þðx� �xijÞ so

sij þ 1
ð4:19Þ

where the 1 in the denominator is to prevent over-
flow when sij is almost 0.

This local enhancement function stretches x(i, j)
to achieve a predefined local standard deviation so.
In addition, the local mean can also be adjusted by
modifying (4.19) as

yij ¼ amo þð1�aÞ �xij þðxij� �xijÞ so

sij þ 1
ð4:20Þ

where mo is the mean to be enforced locally and
0�a� 1 is a parameter to control the degree to
which it is enforced.

The function defined by (4.20) will produce an
image with a local mean mo and local standard
deviation so everywhere in the image. The actual
local mean mo and local standard deviation so vary
from pixel to pixel in a certain range depending on
the strength of parameters a.

It is important to keep in mind that local contrast
enhancement is not a point operation. It is essen-
tially a neighbourhood processing. This technique
may well enhance localized subtle details in an
image but it will not preserve the original image
information (Figure 4.13).

4.6 �FFT selective and adaptive
filtering

This section presents our recent research illustrating
how filters are designed based on the spatial pattern
of targeted periodic noise to be removed (Liu and
Morgan, 2006).

Remotely sensed images or products derived
from these images can be contaminated by system-
atic noise of a particular frequency or frequencies
which vary according to some function relating
to the sensor or imaging configuration. To remove
this type of noise pattern, FFT filtering in the
frequency domain is the most effective approach.
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As shown in Figure 4.14a, the image is a feature-
matching result of a pair of Landsat-7 ETMþ
panchromatic images across a major earthquake
event, aiming to reveal the co-seismic shift at
sub-pixel accuracy (Liu, Mason and Ma, 2006).
Severe horizontal and vertical striping noise pat-
terns plague the image and seriously obscure the
desired surface shift information.

4.6.1 FFT selective filtering

In-depth investigation indicates that the horizontal
striping is caused by the two-way scanning of the
Landsat ETMþ in conjunction with the orbital
drift between two image acquisitions. Figure 4.15
left shows a small sub-scene of an area of the image
which is relatively homogeneous. In general, the
clear striping pattern is representative of the entire
image, displaying equally spaced lighter and darker
bands. This regular noise pattern was significantly
enhanced by applying a 1 line� 101 column
smoothing filter to remove much of the scene
content (Figure 4.15 right). This striping noise of
fixed frequency can be removed by frequency do-
main filtering. After converting the image f(x, y)
into a frequency spectrum F(u, v) via the FFT, the
key point for successful filtering is to locate the
representative frequency spectrum ‘spots’ corre-
sponding to the periodic noise pattern and mask
them off with a function H(u, v) before making the
inverse FFT back to an image. Such FFT selective

filtering comprises the following steps in two stages
(Figure 4.16):

Procedure of FFT selective filtering:

1. A single sub-scene (e.g. 1024� 1024 pixels) of
the image is selected from an areawith relatively
homogeneous scene content and clear striping.

2. The stripes are enhanced by a 1� 101 one-
dimensional horizontal smoothing filter.

3. The stripe-enhanced sub-scene is then thre-
sholded to create a black andwhite binary image.

4. The binary stripe image is transformed to the
frequency domain, using the 2D FFT, and the
power spectrum is calculated to give the absolute
magnitude of the frequency components.

5. The magnitude of the spectrum is normalized
to 0–1 after masking off the dominant zero
and very near-zero frequencies that always
form the highest magnitudes in the frequency
spectrum but which carry no periodic noise
information. The frequencies of the highest
magnitude peaks which relate to specific noise
components can then be located and retained by
thresholding.

6. Inverting this result (i.e. interchanging zeros for
ones and ones for zeros) creates an instant
binary mask for selective frequency filtering.
The zero and very near-zero frequencies are set
to 1 in the mask to retain the natural scene
content in filtering. Additionally, this initial
binary filter function is convolved with an

Figure 4.13 Effects of local enhancement: (a) original image; and (b) local enhancement image
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Figure 4.14 (a) The original co-seismic shift image. (b) The FFT selective filtering result; the horizontal
stripes have been successfully removed, but the vertical noise is now very noticeable. (c) The FFT adaptive filtering
result; the multiple frequency wavy patterns of vertical stripes have been successfully removed and thus clearly reveal
the phenomena of regional co-seismic shift along the Kunlun fault line as indicated by three arrows. Yellow–red
indicates movement to the right and cyan–blue indicates movement to the left
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appropriately sized Gaussian pulse to eliminate
the possibility of ringing artefacts.

7. The mask generated from the selected sub-scene
can then be used on the entire noisy image,
because the identified striping frequencies are
independent of position in the image. The mask
can then simply be multiplied by the 2D FFT of
the entire image.

8. Finally, the result is transformed back to the
image domain, via the 2D inverse FFT, to pro-
duce a de-striped image.

4.6.2 FFT adaptive filtering

As shown in Figures 4.17 and 4.14b, after the suc-
cessful removal of the horizontal stripes, the vertical
noise pattern in the horizontally filtered image is
more clearly revealed than before. The noise is not

simple stripe-like but instead forms a series of
parallel, vertically aligned wavy lines with progres-
sively increasing frequency from the middle to
both edges of the image (Figure 4.14b). Analysis
andsimulationof thechanging frequencyof thenoise
indicate that this is caused by the transition from the
fixed angular speed (2.210 95 rad s�1) of the ETMþ
scanner to the line speed on the curved Earth’s
surface, as depicted in Figure 4.18. The surface
scanning speed, with a fixed angular speed of the
rotating scanner mirror, varies symmetrically across
the swath width about the nadir point, accelerating
out towards theedgesasdefinedbytheformula (4.21)
derived from the diagram in Figure 4.18.

The scanning speed on the Earth’s surface, dl/dt,
varies as a function of u or the scanning angular
speed du/dt. By the sine theorem

R

sin u
¼ Rþ r

sina
:

Then,

a ¼ arcsin
Rþ r

R
sin u

� �
:

As w¼ p�a� u, then

w ¼ p� u�arcsin
Rþ r

R
sin u

� �
:

Given the arc length l¼Rw, then

dl

dt
¼ R

dw

dt
¼ R

dw

du
� du
dt

:

Figure 4.15 A 500� 500 pixel sub-scene of the image
(left); and (right) the image filtered with a one-dimen-
sional, horizontal smoothing filter (kernel size 1� 101)
to isolate the noise and aid analysis

Figure 4.16 A graphical illustration, step by step, of the selective frequency filtering algorithm for the removal
of horizontal stripes in the image
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Thus

dl

dt
¼ �R

du

dt
1þ ðRþ rÞcos u

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rþ r

R
sin u

� �2
s

2
66664

3
77775
ð4:21Þ

where,

u is the scanning angle (variable)
w is the angle subtended by two Earth radii, corre-
sponding to u
a is the angle between the scanning line of sight
and the Earth’s radius at the scanning position
r is the height of the sensor above the Earth’s surface

R is the radius of the Earth
l is the scanning length on Earth’s surface for angle
u from nadir to scanning position, equivalent to the
arc length between Earth’s radii.

Within the scanning range of the ETMþ sensor
system, the function defined by (4.21) can be
precisely simulated by the least squares fit of a
second-order polynomial, resulting in a parabolic
curve (Figure 4.19):

f ðxÞ ¼ 4:586� 10�10x2�1:368� 10�7xþ 0:0019

ð4:22Þ
where x is the image column position.

For processing efficiency, this simple parabolic
function is used to adapt the filter aperture in the
frequency domain to remove vertical noise patterns
of differing frequencies at different image columns.
The idea is that each image column should be
filtered according to a noise frequency calculated
from (4.22) at the corresponding scanning angle u,
so the image will be adaptively filtered, column by
column, with decreasing frequency from the left to
the middle, and then increasing frequency from the
middle to the right.

In practice, the wavy form of the stripes
makes this a truly 2D filtering problem, in which
frequency components will be located not only on
the horizontal frequency axis but also at locations
diagonal to the spectrum centre. The adaptive
filter design must therefore be based on the

Figure 4.18 The geometric relationship between a con-
stant angular speed of cross-track scanning and the cor-
responding line speed on the curved surface of the Earth

Figure 4.17 After the selective horizontal filtering applied to the original image (left) to remove horizontal
stripes successfully, the vertical wavy stripe noise becomes more obvious in the filtered image (right).
Image size: 2000� 2000
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concept of a circularly symmetric band-reject filter
of the Butterworth type. The transfer function for
a Butterworth band-reject filter of order n is
defined as

Hðu; vÞ ¼ 1

1þ Dðu; vÞW
D2ðu; vÞ�D2

0

� �2n ð4:23Þ

whereD(u, v) is the distance from the point (u, v) to
the centre origin of the frequency spectrum, D0 is
the radius of the filter defined as the principal
frequency to be filtered out and n is the order of
the filter roll-off either side of the central ring
defined by D0 forming the bandwidth W.

For an M�N image section and its subsequent
FT, D(u, v) is given by

Dðu; vÞ ¼ ½ðu�M=2Þ2 þðv�N=2Þ2�1=2: ð4:24Þ

The filter function, H(u, v), thus removes a band
of frequencies at a radial distance, D0, from the
frequency spectrum centre while smoothly attenu-
ating the frequencies either side of D0 to reduce the
possibility of ringing. The key aspect of this adap-
tive filter design is that D0 is decided by the scan-
ning function formula (4.21) or (4.22). Thus D0

varies column by column given the scanning angle u
corresponding to the image column position
(Figure 4.20).
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Figure 4.19 A plot of the scanning speed function of the Earth’s surface as defined by the formula (4.21) in the
scanning angular range 0–7� (in diamond markers) fitted by the parabolic curve defined in formula (4.22)

Figure 4.20 Two 512� 512 adaptive Butterworth band-reject filters defined by the function (4.23): left, D0¼ 3,
W¼ 3, n¼ 3; and right, D0¼ 8, W¼ 3, n¼ 3. The filters have been edited to allow the central vertical frequencies
through without suppression because these components have undergone previous horizontal filtering. The radius
of the filter D0 varies with the image column position according to the formulae (4.22)
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The FFT frequency-adaptive filtering procedure
is as follows:

1. Starting from the left edge of the image, the
FFT for a 512� 512 neighbourhood is applied
to produce F(u, v).

2. The noise frequency at the central column of the
512� 512 neighbourhood is calculated using
formula (4.22), given the column position.

3. In the Fourier domain, the noise frequency in
F(u, v) is masked off by multiplication with the
filter transfer function H(u, v) to produce F(u, v)
H(u, v).

4. Use the IFFT to transform the filtered
frequency spectrum F(u, v)H(u, v) back to an
image f(x, y) � h(x, v), but only retaining the
central column.

5. Move to the next column and repeat steps 1–4 till
the last column is reached.

6. Move down to the next 512 block belowand repeat
steps 1–5 till the end of the image is reached.

After the FFT selective and adaptive filtering the
horizontal and vertical noise patterns are effectively
removed, as shown in Figure 4.14c, and the left
lateral co-seismic shift along theKunlun fault line is
clearly revealed.

4.7 Summary

Image filtering is a process for removing image
information of particular frequencies. Within this
context, it is typical of signal processing in the
frequency domain via the Fourier transform. On
the basis of the convolution theorem, FT-based
filtering can be performed in the image domain,
using convolution and realized by neighbourhood
processing in an image. The most commonly used
filters for digital image filtering rely on the concept
of convolution and operate in the image domain for
reasons of simplicity and processing efficiency.

Low-pass filters aremainly used to smooth image
features and to remove noise but often at the cost
of degrading image spatial resolution (blurring).
To remove random noise with the minimum degra-
dation of resolution, various edge-preserved filters
have been developed such as the adaptive median
filter. A classification image is a ‘symbol’ image

rather than a digital image and therefore should
not be subject to any numerical operations. The
mode (majority) filter is suitable for smoothing
a classification image as the filtering process is based
on the election of a local majority within
the processing windowwithout numerical operations.

There are two different types of high-pass filters:
gradient and Laplacian filters. As the first derivative
of DN change in a direction, the gradient gives a
measurement of DN slope. Gradient is a vector
and so gradient filters are directional; they are
commonly used as orthogonal pairs for directional
enhancement. Images representing the magnitude
and orientation of gradient can be calculated from
the pair of images derived from the orthogonal
filters. Laplacian, as the second derivative, is a
scalar that measures the change rate of DN slope.
Image edge features are characterized as significant
DN slope changes and Laplacian is therefore very
effective for enhancing and extracting them. One of
the most common applications of Laplacian for not
only remote sensing image processing but also
general graphic enhancement is the so-called
edge-sharpening filter.

Combining neighbourhood processing with point
operations for contrast enhancement formulates a
new method of image processing: local contrast
enhancement. It adjusts the image contrast based
on local statistics calculated in a neighbourhood.
This is based on the concept of amoregeneral branch
of neighbourhood processing: adaptive filters. As
examples, image-characteristics-based derivation of
FFT selective and adaptive filters is introduced for
advanced readers at the end of this chapter.

Our general advice on all filtering and neigh-
bourhood processing is not to trust them blindly!
Artefacts can be introduced, so use of the original
images as a reference is always recommended.

Questions

4.1 Using a diagram, illustrate the 4f optical image
filtering system and explain the principle of
image filtering based on the Fourier transform.

4.2 What is the convolution theorem and why is it
important in digital image filtering?

4.3 Explain the relationship between the filtering
function H(u, v) in the frequency domain and
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the PSF function h(x, y) in the spatial (image)
domain.

4.4 If the range over which the PSF h(x, y) is
non-zero is (�w, þw) in one dimension and
(�t, þt) in the other, write down the discrete
form of convolution f(x, y) � h(x, y).

4.5 What is a low-pass filter for digital image
filtering and what are its effects? Give some
examples of low-pass filter kernels.

4.6 Discuss the major drawback of mean filters
and the importance of edge-preserved smoo-
thing filters.

4.7 To smooth a classification image, what filter
is appropriate and why? Describe this filter
with an example.

4.8 Give a general definition of conditional filters.
4.9 Describe the clean pixels filter and explain

how it works.
4.10 Describe the k nearest mean filter, median

filter and adaptive median filter and discuss
their merits based on the filtering results of the
sample image below:

4.11 What is it meant by high-pass filtering?
4.12 Describe the mathematical definitions of

image gradient and Laplacian together
with examples of gradient and Laplacian
filters.

4.13 Use a diagram to illustrate and explain the
different functionalities of gradient- and La-
placian-based high-pass filters.

4.14 Given a DEM, how would you calculate the
slope and aspect of topography using gradient
filters?

4.15 Why is the histogram of a Laplacian
filtered image symmetrical about a high peak
at zero with both positive and negative
values?

4.16 What is an edge-sharpening filter? What are
the major applications of edge- sharpening
filters?

4.17 Describe local contrast enhancement tech-
nique as a neighbourhood processing proce-
dure and explain why it is not a point
operation.

CH4 FILTERING AND NEIGHBOURHOOD PROCESSING 55





5
RGB–IHS Transformation

In this chapter, we first describe the principles of
the RGB–IHS and IHS–RGB transformations. Two
decorrelation stretch techniques, both based on
saturation stretch, are then discussed. Finally, a hue
RGB (HRGB) colour composition technique is
introduced. The RGB–IHS transformation is also
a powerful tool for data fusion but we leave this part
to Chapter 6 along with the discussion of several
other data fusion techniques.

5.1 Colour coordinate
transformation

A colour is expressed as a composite of three
primaries, Red, Green and Blue, according to the
tristimulus theory. For colour perception on the
other hand, a colour is quantitatively described in
terms of three variables, Intensity, Hue and Satura-
tion, which are measurements of the brightness,
spectral range and purity of a colour. There are
several variants of the RGB–IHS transformation
based on different models. For the RGB additive
colour display of digital images, a simple RGB
colour cube is the most appropriate model. The
RGB–IHS colour coordinate transformation in
a colour cube is similar to a three-dimensional
Cartesian–conical coordinate transformation.

As shown in Figure 5.1, any a colour in a three-
band colour composite is a vector P(r, g, b) within

a colour cube of 0–255 in three dimensions (for
24 bit RGB colour display). Themajor diagonal line
connecting the origin and the furthest vertex is
called the grey line because the pixels lying on this
line have equal components in red, green and blue
(r¼g¼ b). The intensity of a colour vector P is
defined as the length of its projection on the grey
line, OD, the hue as the azimuth angle around the
grey line, a, and the saturation as the angle between
the colour vector P and the grey line, w. Let the hue
angle of pure blue colour be zero. We then have the
following RGB–IHS transformation:

Iðr; g; bÞ ¼ 1ffiffiffi
3

p ðrþ gþ bÞ ð5:1Þ

Hðr; g; bÞ ¼ arccos
2b� g� r

2V

where V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ g2 þ b2Þ� ðrgþ rbþ gbÞp
ð5:2Þ

Sðr; g; bÞ ¼ arccos
rþ gþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðr2 þ g2 þ b2Þp : ð5:3Þ

Saturation as defined in formula (5.3) can then be
rewritten as a function of intensity:

Sðr; g; bÞ ¼ arccos
Iðr; g; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ g2 þ b2

p : ð5:4Þ

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
� 2009 John Wiley & Sons, Ltd



For the same intensity, if r¼g¼ b, saturation
reaches its minimum, S(r, g, b)¼ arccos 1¼ 0; if
twoof r,g, b are equal to 0, then saturation reaches its
maximum, Sðr; g; bÞ ¼ arccos ð1= ffiffiffi

3
p Þ � 54:7356�.

Actually, saturation of a colour is the ratio between
its achromatic and chromatic components, so satu-
ration increases with the increase of difference
between r, g and b, and it can therefore be defined
by the maximum and minimum of r, g and b in a
value range from no saturation (0) to full saturation
(1) as in the formula below (Smith, 1978):

Sðr; g; bÞ ¼ maxðr; g; bÞ�minðr; g; bÞ
maxðr; g; bÞ : ð5:5Þ

This formula implies that a colour vector reaches
full saturation if at least one of its r, g and b
components is equal to 0 while not all of them are 0.
For instance, colour P(r, g, b)¼ (255, 0, 0) is pure
red with full saturation andP(r, g, b)¼ (0, 200, 150)
is a greenish cyan with full saturation.

The value range of hue is 0–2p or 0�–360�, while
the value range of the arccosine function of hue in
formula (5.2) is 0–p, but the 2p range of hue can be
determined based on the relationship between r, g
and b. For instance, if b > r >g, the actual hue angle
is hue(r, g, b)¼ 2p�H(r, g, b).

Given intensity I, hue angle a and saturation
angle w, we can also derive the IHS–RGB transfor-

mation based on the same 3D geometry depicted in
Figure 5.1:

BðI;a;wÞ ¼ Iffiffiffi
3

p ð1þ
ffiffiffi
2

p
tan w cos aÞ ð5:6Þ

GðI;a;wÞ ¼ Iffiffiffi
3

p 1�
ffiffiffi
2

p
tanw cos

p
3
þa

� �h i
ð5:7Þ

RðI;a;wÞ ¼ Iffiffiffi
3

p 1þ
ffiffiffi
2

p
tanw cos

2p
3

þa

� �� �
:

ð5:8Þ
Equivalently, but with a slight difference, the

RGB–IHS transformation can also be derived from
matrix operations by a coordinate rotation of the
colour cube, and aided by sub-coordinates of v1
and v2. As shown in Figure 5.2, the sub-axis v1 is
perpendicular to the grey line starting from the
intensity I; it is in the plane decided by the blue
axis and the grey line. The sub-axis v2 is perpendi-
cular to both the grey line and v1. Thus v1 and v2
formulate a plane perpendicular to the grey line and
the end point of the colour vector P(r, g, b) is in this
plane. Thus considering the Cartesian–polar coor-
dinate transformation of the sub-coordinate system
of v1 and v2, the followingmatrix operation between
I, v1,v2 and R, G, B can be established:

I

v1

v2

0
B@

1
CA¼

1=3 1=3 1=3

�1=
ffiffiffi
6

p �1=
ffiffiffi
6

p
2=

ffiffiffi
6

p

1=
ffiffiffi
6

p �2=
ffiffiffi
6

p
0

0
B@

1
CA

R

G

B

0
B@

1
CA :

ð5:9Þ
Then the hue and saturation can be derived based on
their relationships with v1 and v2 (Figure 5.2):

H ¼ arctanðv2=v1Þ ð5:10Þ

S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21þ v22

q
ð5:11Þ

S¼ arctan
S0ffiffiffi
3

p
I
: ð5:12Þ

Here S0 is the saturation for a given intensity Iwhile
S is the intensity-scaled angular saturation as de-
picted in Figure 5.1. Depending on the RGB–IHS
model used, there are several different definitions
for saturation. Many publications define saturation

Blue

Green 

Red 

White

P(r,g,b)

D

o

r

g

b

E

Figure 5.1 The colour cubemodel for theRGB–IHStrans-
formation
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in the form of (5.11) however, this definition is
correct only for a fixed intensity. For a digital image
RGB additive colour composite display based on
the RGB colour cube model, the definitions of
saturation in angle w given in (5.4) and (5.5) are
the most appropriate. Formula (5.12) is essentially
the same as (5.4).

An IHS–RGB transformation can then be derived
from the inversion of (5.9):

R

G

B

0
B@

1
CA ¼

1 �1=2
ffiffiffi
6

p
3=2

ffiffiffi
6

p

1 �1=2
ffiffiffi
6

p �3=2
ffiffiffi
6

p

1 1=
ffiffiffi
6

p
0

0
B@

1
CA

I

v1

v2

0
B@

1
CA

ð5:13Þ
v1 ¼ S0cos 2pH
v2 ¼ S0sin 2pH:

ð5:14Þ

RGB–IHS and IHS–RGB transformations allow us
to manipulate intensity, hue and saturation compo-
nents separately and thus enable some innovative
processing for decorrelation stretch and image data
fusion.

5.2 IHS decorrelation stretch

High correlation generally exists among spectral
bands of multi-spectral images. As a result, the
original image bands displayed in RGB formulate
a slim cluster along the grey line occupying only
a very small part of the space of the colour cube
(Figure 5.3a). Contrast enhancement on individual
image bands can elongate the cluster in the colour
cube but it is not effective for increasing the volume
of the cluster since it is equivalent to stretching the
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Figure 5.2 The model of the matrix RGB–IHS transformation. Adapted from Niblack (1986)
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Figure 5.3 (a) Distribution of pixels in the RGB cube for typical correlated bands. (b) The effect of stretching indi-
vidual bands. The data cluster is elongated along the grey line but not stretched to fill the RGB cube by this operation.
(c) Decorrelation stretch expands the data cluster in the direction perpendicular to the grey line to fill the 3D space of
the RGB cube
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intensity only (Figure 5.3b). To increase thevolume,
the data cluster should expand in both directions
along and perpendicular to the grey line. This is
equivalent to stretching both intensity and satura-
tion components (Figure 5.3c). The processing is
called IHS decorrelation stretch (IHSDS) because
the correlation among the three bands is reduced
to generate a spherical data cluster in the RGB cube
as indicated in Table 5.1. In comparison with an
ordinary contrast stretch, the IHSDS is essentially
a saturation stretch. As proposed by Gillespie,
Kahle and Walker (1986), the IHSDS technique
involves the following steps:

1. RGB–IHS transformation.
2. Stretch intensity I and saturation S components.
3. IHS–RGB transformation.

In the second step, the hue component can also
be stretched. However, when transforming back
to RGB display, the resultant colours may not be
comparablewith those of the original image and this
makes image interpretation potentially difficult.

The limited hue range of a colour composite
image ismainly causedby colour bias. If the average
brightness of one band is significantly higher than
those of the other two bands, the colour composite
will have an obvious colour ‘cast’ of the primary
colour assigned to the band of highest intensity.
As we discussed in Chapter 2, the balanced contrast
enhancement technique (BCET) was developed to
solve just this problem. BCET removes inter-band
colour bias and therefore increases the hue variation
of a colour composite. As a result, the hue compo-
nent derived from a BCET stretched colour com-
posite will have a much wider value range than that
derived from the original colour-biased composite.

Thewider huevalue range achievedbyBCETmeans
more spectral information is presented as hue rather
than as intensity and saturation, which are funda-
mentally different from the wide hue range which
would be achievedby stretching the hue component.
Inmanycases, a simple linear stretchwith automatic
clipping or an interactive piecewise linear stretch
can also effectively eliminate the colour bias. An
optimized IHSDS can be achieved by performing
BCET or linear stretch as a pre-processing step, as
summarized below:

1. BCET stretch (or linear stretch with appropriate
clipping).

2. RGB–IHS transformation.
3. Saturation component stretching.
4. IHS–RGB transformation.

The DN ranges of the images converted from
stretched IHS components back toRGBcoordinates
may exceed the maximum range of display device
(usually 8 bits or 0–255 per channel) and so may
need to be adjusted to fit the maximum 8 bit DN
range. This can be done easily in any image proces-
sing system, such as ER Mapper; the image will be
automatically displayed within 8 bits per channel
using the actual limits of input image DNs.

The effect of the IHSDS-based saturation stretch
is similar to that of the decorrelation stretch based
on principal component analysis (to be introduced
in Chapter 7). The difference between them is that
principal component decorrelation stretch is based
onscenestatisticswhiletheIHSdecorrelationstretch
is interactive, flexible and based on user observation
of the saturation image and its histogram.

Decorrelation stretch enhances the colour
saturation of a colour composite image and thus

Table 5.1 The correlation coefficients before and after decorrelation stretch of the Landsat-7 ETMþ bands 5,
3 and 1 RGB colour composite shown in Figure 5.4

Correlation matrix before DS Correlation matrix after DS

Correlation Band 1 Band 3 Band 5 Correlation Band 1 Band 3 Band 5

Band 1 1.00 0.945 0.760 Band 1 1.00 0.842 0.390
Band 3 0.945 1.00 0.881 Band 3 0.842 1.00 0.695
Band 5 0.760 0.881 1.00 Band 5 0.390 0.695 1.00
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effectively improves the visual quality of the image
spectral information, without significant distortion
of its spectral characteristics as illustrated in
Figure 5.4. Decorrelation-stretch-enhanced colour
images are easy to understand and interpret and
have been successfully used for many applications
of remote sensing.

5.3 Direct decorrelation stretch
technique

This technique performs a direct saturation stretch
(DDS) without using RGB–IHS and IHS–RGB
transformations (Liu and Moore, 1996). The DDS
achieves the same effect as the IHSDS. As DDS
involves only simple arithmetic operations and

can be controlled quantitatively, it is much faster,
more flexible and more effective than the IHSDS
technique.

As shown in Figure 5.1, a colour vector,P, and the
grey line together define a plane or a slice of the
RGB cube. If we take this slice out as shown in
Figure 5.5, the grey line, the full saturation line
and themaximum intensity line formulate a triangle
that includes all the colours with the same hue but
various intensity and saturation. The colour vectorP
is between the grey (achromatic) line and the maxi-
mum saturation (chromatic) line and it can be
considered as the sum of two vectors: a vector a
representing the achromatic (zero-saturation) com-
ponent, the white light in the colour, and a vector c
representing the chromatic (full-saturation) compo-
nent that is relevant to the pure colour of the hue.

Figure 5.4 Colour composites of ETMþ bands 5, 3 and 1 in red, green and blue: (a) Original colour composite without
any stretch; (b) BCET stretched colour composite; (c) IHS decorrelation stretched colour composite after BCET stretch;
and (d) DDS (k¼ 0.5) colour composite after BCET stretch
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Given P¼ (r, g, b), let a¼min(r, g, b). Then

a ¼ ða; a; aÞ
c ¼ ðr� a; g� a; b� aÞ

¼ P� a

ð5:15Þ

or

P ¼ aþ c: ð5:16Þ
A DDS is achieved by reducing the achromatic
component a of the colour vector P, as defined
below:

Pk ¼ P� ka ð5:17Þ

where k is an achromatic factor and 0 < k < 1.
As shown in Figure 5.5, the operation shifts the

colour vector P away from the achromatic line to
formanewcolour vectorPkwith increased saturation
(wk >w) and decreased intensity (ODk<OD). To

restore the intensity to a desired level, linear stretch
can then be applied to each image in red, green and
blue layers. This will elongate Pk to Pks which has
the same hue and saturation as Pk but has increased
intensity (ODks >ODk). The operation does not
affect the hue since it only reduces the achromatism
of the colour and leaves the hue information, c,
unchanged.

This is easy to understand if we rewrite formu-
la (5.17) as

Pk ¼ P� ka ¼ cþ a� ka ¼ cþð1� kÞa:
The algebraic operations for vector formula (5.17)
are

rk ¼ r� ka ¼ r� kminðr; g; bÞ
gk ¼ g� ka ¼ g� kminðr; g; bÞ
bk ¼ b� ka ¼ b� kminðr; g; bÞ:

ð5:18Þ

Again, as already indicated in the IHSDS, the three
bands for colour compositionmust bewell stretched
(e.g. BCET or linear stretch with appropriate clip-
ping) before the DDS is applied.

The DDS performs a decorrelation stretch essen-
tially the same as that based on the IHS transforma-
tion as illustrated in Figure 5.4. We can prove the
followingproperties of theDDS (refer to Section 5.6
for details):

1. DDS is controlled by the achromatic factor k.
2. For a given k, the amount of saturation stretch

is dependent on the initial colour saturation; a
lower saturation image is subject to stronger
saturation stretch than a higher saturation image
for a given k.

3. DDS does not alter the relationship between
those colours with the same saturation but dif-
ferent intensities.

4. For colours with the same intensity but different
saturation, DDS results in higher intensity for
more saturated (purer) colours.

The value k is specified by users. It should be set
based on the saturation level of the original colour
composite. The lower the saturation of an image,
the greater the k value should be given (within the
range of 0–1) and k¼ 0.5 is generally good for most
cases. Figure 5.6 illustrates the initial BCET colour
composite and the DDS colour composites with
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Figure5.5 Theprincipleof thedirectdecorrelationstretch
(DDS) technique
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k¼ 0.3, 0.5 and 0.7; these DDS composites all show
increased saturation without distortion of hues,
in comparison with the original BCET colour
composite, and their saturation increases with
increasing k. The merits of simplicity and quantita-
tive control of DDS are obvious.

5.4 Hue RGB colour composites

As shown in Figure 5.7, with the RGB–IHS trans-
formation, three hue images can be derived from
three different band triplets of a multi-spectral
image. In each hue image, the brightness (the pixel
DN) changeswith hueswhich are determined by the

spectral profiles of the source bands of the triplet.
If three hue images are displayed in red, green and
blue using an RGB additive colour display system,
a Hue RGB (HRGB) false colour composite image
is produced (Liu and Moore, 1990). Colours in an
HRGB image are controlled by the hue DNs of the
three component hue images. An HRGB image can
therefore incorporate spectral information of up to
nine image bands. Pixel colours in an HRGB image
are unique presentations of the spectral profiles
of all the original image bands. The merits of an
HRGB image are two-fold:

. It suppresses topographic shadows more effec-
tively than ratio.

Figure 5.6 (a) A BCET standard false colour composite of Terra-1 ASTER bands 3, 2 and 1 in RGB; (b) DDS with k¼ 0.3;
(c) k¼ 0.5; and (d) k¼ 0.7
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. It condenses and displays spectral information of
up to nine image bands in a colour composite of
three hue images.

From the definition of hue, it is easy to prove
that H component is independent of illumination
and therefore is free of topographic shadows. Sup-
pose the irradiance upon a sunlit terrain slope, Et, is
n times that upon a terrain slope in shade, Eb. Then

Et ¼ nEb; rt ¼ nrb; gt ¼ ngb; bt ¼ nbb

where r, g and b represent the radiance of the three
bands used for RGB colour composition.

From formula (5.2) we have

Hðrt; gt; btÞ ¼ arccos
2bt � gt � rt

2Vt

¼ arccos
2nbb � ngb � nrb

2nVb

¼ arccos
2bb � gb � rb

2Vb

¼ Hðrb; gb; bbÞ

ð5:19Þ

where

Thus hue is independent of illumination and not
affected by topographic shadows. More generally,
we can prove that

Hðri; gi; biÞ ¼ Hðrj; gj; bjÞ
if

Ej ¼ nEi þ a:

ð5:20Þ

This equation implies that if a hue image is
derived from three spectrally adjacent bands (thus
the atmospheric effects on each band are not
significantly different), it is little affected by sha-
dows as well as atmospheric scattering.

With topography completely removed, an HRGB
image has low SNR and it is actually difficult to
interpret visually for ground objects. As shown in
Figure 5.8, an HRGB image is very like a classifi-
cation image without topographic features. It can
therefore be used for pre-processing in preparation
for classification. For visual interpretation of an
HRGB image, it is advisable to use ordinary colour
composites as reference images.
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Figure 5.7 Schematic illustration of the production of an HRGB image

Vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2t þ g2t þ b2t Þ� ðrtgt þ rtbt þ gtbtÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðnrbÞ2 þðngbÞ2 þðnbbÞ2� � ðn2rbgb þ n2rbbb þ n2gbbbÞ

q
¼ nVb:
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5.5 �Derivation of RGB–IHS and
IHS–RGB transformations
based on 3D geometry of the
RGB colour cube

5.5.1 Derivation of RGB–IHS Transformation

As shown in Figure 5.9, the intensity OD is the
projection of colour vector P(r, g, b) onto the grey
line OW or vector W(a, a, a), where a can be any
valuewithin the colour cube. Then, according to the
vector projection rule,

Iðr; g; bÞ ¼ P �W
jWj ¼ raþ gaþ baffiffiffiffiffiffiffi

3a2
p ¼ 1ffiffiffi

3
p ðrþ gþ bÞ:

ð5:21Þ

The hue angle a (or ffPDE) is the angle between two
planes defined by triangles OBW and OPW which
intercept along the grey line OW. Both planes can
be defined by the three corner points of the two
triangles:

OBW :

B G R

a a a

a 0 0

							
							 ¼ 0; G�R ¼ 0 ð5:22Þ

OPW :

B G R

a a a

b g r

							
							 ¼ 0;

Bðr� gÞþGðb� rÞ
þRðg� bÞ ¼ 0:

ð5:23Þ
Thus the angle between planes OBWand OPW, the
hue angle a, can be decided:

cos a ¼ 2b� g� rffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� gÞ2 þðb� rÞ2 þðg� bÞ2

q
¼ 2b� g� r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ g2 þ b2Þ� ðrgþ rbþ gbÞp

ð5:24Þ

Hðr;g;bÞ¼arccos
2b�g�r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2þg2þb2Þ�ðrgþrbþgbÞp :

Figure 5.8 (a) An HRGB colour composite of an ATM (Airborne Thematic Mapper) image: Red, hue derived from
bands 10, 9, 8; Green, hue derived from bands 7, 6, 5; and Blue, hue derived from bands 4, 3, 2. (b) An ordinary colour
composite of bands 8, 5 and 2 in RGB for comparison
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The saturation is the angle w between colour vector
P(r, g, b) and grey line vector W(a, a, a). Thus,
according to the vector dot product, we have

cosw¼ P�W
jPjjWj¼

aðrþgþbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þg2þb2

p ffiffiffiffiffiffiffi
3a2

p

¼ rþgþbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðr2þg2þb2Þp

ð5:25Þ

Sðr;g;bÞ¼arccos
rþgþbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðr2þg2þb2
p :

5.5.2 Derivation of IHS–RGB transformation

Given intensity I, hue a and saturation w, we can
deriveR(I,a,w),G(I,a,w) andB(I,a,w) as depicted
in Figure 5.9.

To find B(I, a, w), the key is to find the angle u
between colour vector P and the B axis.

The angle between the grey line and any of the
RGB axes is identical. For instance, the angle b
between the grey line and the B axis is

cos b ¼ B �W
jBjWj ¼

abffiffiffiffiffi
b2

p ffiffiffiffiffiffiffi
3a2

p ¼ 1ffiffiffi
3

p : ð5:26Þ

As cos b ¼ OD=OE ¼ 1=
ffiffiffi
3

p
; OD ¼ I, thus OE¼ffiffiffi

3
p

I (see the triangle OED in Figure 5.9) and

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OE2 � I2

p
¼

ffiffiffi
2

p
I:

The length of the colour vector P is OP ¼ I=cos w
while the distance between P and the grey line is
PD¼ I tanj.

From the triangle EPD, we then have

EP2¼ED2 þ PD2 � 2ED 	 PD cos a

¼2I2 þ I2tan2w� 2
ffiffiffi
2

p
I2tan w cos a:

ð5:27Þ

From the triangle OEP, we can also find EP as

EP2¼ OE2 þ OP2 � 2OE 	 OP cos u

¼ 3I2 þ I2

cos2w
� 2

ffiffiffi
3

p I2cos u

cos w
:

ð5:28Þ

Taking the right sides ofEquations (5.27) and (5.28),
we can then solve for cos u:

cos u ¼ 1ffiffiffi
3

p cos wþ
ffiffiffi
2

3

r
sin w cos a: ð5:29Þ

As shown in the triangle ObP in Figure 5.9:

b ¼ OP cos u ¼ cos u

cos w
I

¼ I

cos w

1ffiffiffi
3

p cos wþ
ffiffiffi
2

3

r
sin w cos a

 !
:

Thus,

BðI;a;wÞ ¼ b ¼ Iffiffiffi
3

p ð1þ
ffiffiffi
2

p
tan w cos aÞ:

ð5:30Þ

Figure 5.9 The relationship between RGB and IHS in the colour cube 3D geometry
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If we look into the RGB colour cube along the grey
line, the projection of this cube on the plane per-
pendicular to the grey line is a hexagon as shown in
Figure 5.10. Given a hue angle a of colour vector P
starting from the B axis, the angle between P and
the R axis is 2

3 pþa and that between P and G axis
is 4

3 pþa. On the other hand, the intensity I and
saturation angle w are both independent of the
orientation of the RGB coordinate system. Thus,
we can solve R(I, a, w) and G(I, a, w) in a similar
way to solving B(I, a, w), as above, based on the
central symmetry of the grey line to the RGB axes.
As shown in Figure 5.9, if we consider starting the
hue angle from the R axis, then

OE0 ¼ OE ¼
ffiffiffi
3

p
I and E0D ¼ ED ¼

ffiffiffi
2

p
I:

From triangles E0PD and OE0P, again we can estab-
lish two equations for E0P:

E0P2 ¼ E0D2 þ PD2 � 2E0D 	 PD cosa

¼ 2I2þ I2tan2w�2
ffiffiffi
2

p
I2 tanw cos

2

3
pþa

� �
ð5:31Þ

E0P2 ¼OE02 þ OP2 � 2OE0 	 OP cos g

¼ 3I2þ I2

cos2w
�2

ffiffiffi
3

p I2cos g
cosw

ð5:32Þ

where g is the angle between P and the R axis.

Solving Equations (5.31) and (5.32) for cos g ,

cos g ¼ 1ffiffiffi
3

p cos wþ
ffiffiffi
2

3

r
sin w cos

2

3
pþa

� �
:

ð5:33Þ
As shown in the triangle OrP in Figure 5.9,

r ¼ OP cos g ¼ cos g
cos w

I

¼ I

cos w

1ffiffiffi
3

p cos wþ
ffiffiffi
2

3

r
sin w cos

2

3
pþa

� �" #
:

Finally,

RðI;a;wÞ ¼ r ¼ Iffiffiffi
3

p 1þ
ffiffiffi
2

p
tan w cos

2

3
pþa

� �� �
ð5:34Þ

In the same way and considering

cos
4

3
pþa

� �
¼ � cos

p
3
þa

� �
;

we have

GðI;a;wÞ ¼ g ¼ Iffiffiffi
3

p 1�
ffiffiffi
2

p
tan w cos

p
3
þa

� �h i
:

ð5:35Þ

5.6 �Mathematical proof of DDS and
its properties

5.6.1 Mathematical proof of DDS

The geometrically obvious fact of the saturation
stretch of theDDS in Figure 5.5 can be easily proven
using simple algebra.

Let v ¼ maxðr; g; bÞ. From formula (5.5), the
saturation components for P and Pk are

S ¼ v� a

v
¼ 1� a

v

Sk ¼ ðv� kaÞ� ða� kaÞ
v� ka

¼ 1� a� ka

v� ka
:

The difference between them is

dS ¼ Sk � S ¼ a

v
� a� ka

v� ka
¼ kaðv� aÞ

vðv� kaÞ 
 0:

ð5:36Þ
Therefore Sk
 S.

R G

B

P(r,g,b) 

α

Figure 5.10 Given that hue is the angle a between the
B axis and colour vector P, the angle between P and R is
2
3 pþa and that between P and G is 4

3 pþa
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There are three cases:

1. If a¼ 0, then Sk¼ S¼ 1, and colours with full
saturation (pure colours) are not affected.

2. If a ¼ v, then Sk¼ S¼ 0, and the saturation of
grey tones (achromatic vectors) remains zero,
though the intensity is scaled down.

3. Otherwise, Sk> S when the colour vectors
between the achromatic line and the maximum
saturation line are shifted (stretched) away from
the grey line depending on k, a and c (the effects
will be further discussed in the following
subsection).

5.6.2 The properties of DDS

DDS is independent of hue component. It enhances
saturation with intensity preserved. This can be
further verified by an investigation of the properties
of DDS as follows.

5.6.2.1 DDS is controlled by the
achromatic factor k

The saturation increment of DDS, defined by for-
mula (5.36), is a monotonically increasing function

of k, that is

ddS

dk
¼ aðv� aÞ

ðv� kaÞ2 > 0 ð5:37Þ

where v > a and 0 < k < 1.
When k¼ 1, dS reaches its maximum,

dSmax ¼ a=v, and

Sk ¼ Sþ dSmax ¼ v� a

v
þ a

v
¼ 1:

This is the case for an image of chromatic compo-
nent c.

AsshowninFigure5.11a,a largevalueofk (near1)
results in a great increase in saturation (dS) for a non-
saturated colour vector. Such an overstretch of satu-
ration compresses the colour vectors into a narrow
range near themaximumsaturation line. Conversely,
a small value of k (approaching 0) has little effect on
saturation. In general, k¼ 0.5gives aneven stretchof
saturation between 0 and 1. The value of k can be
adjusted according to requirements. In general, a
large value of k is desirable for an image with very
low saturation and vice versa.

Figure 5.11 The properties of the DDS technique: (a) variation of DDS with the achromatic factor k; and (b) for the
colours with an identical intensity, DDS results in higher intensity for a colour with higher saturation
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5.6.2.2 For a given k, the saturation stretch
is dependent on colour saturation

Consider dS as a function of achromatic element a;
then the first derivative of dS for a is

ddS

da
¼ 1

v
� v� kv

ðv� kaÞ2 : ð5:38Þ

The second derivative is

d2dS

da2
¼ � 2kð1� kÞv

ðv� kaÞ3 < 0 ð5:39Þ

where 0 < k < 1 and v 
 a.
Therefore, as a function of a, dS has a maximum

when

ddS

da
¼ 1

v
� v� kv

ðv� kaÞ2 ¼ 0:

From the above equation, we have

a ¼ 1� ffiffiffiffiffiffiffiffiffiffi
1� k

p

k
v ð5:40Þ

where

1� ffiffiffiffiffiffiffiffiffiffi
1� k

p

k
< 1 for 0 < k < 1:

The saturation for the case of Equation (5.40)
is then

S ¼ v� a

v
¼ 1� 1� ffiffiffiffiffiffiffiffiffiffi

1� k
p

k
: ð5:41Þ

Therefore, the saturation increment dS reaches its
maximum when S satisfies Equation (5.41).

For k¼ 0.5, the saturation stretch reaches the
maximum, dSmax� 0.172, when S� 0.414. The
saturation stretch of DDS becomes less when
saturation is either greater or less than 0.414.

The criteria for the maximum stretch of satura-
tion can be easily controlled bymodifying the value
of k. This property of DDS has a self-balancing
effect that optimizes the stretch of the most con-
densed saturation range.

5.6.2.3 DDS does not alter the relationship
between the colours with the same
saturation but different intensities

Any colour with the same hue and saturation as
a colour vector P but different intensity can be

defined as a colour vector nP:

nP ¼ ðnr; ng; nbÞ
where n is a positive real number.

Then

minðnr; ng; nbÞ ¼ na

na ¼ ðna; na; naÞ:
In the same way as for the derivation of Pk, we have

ðnPÞk¼ nP� kna¼nðr� ka; g� ka; b� kaÞ¼ nPk:

Pk and (nP)k have the same orientation (saturation
and hue). The magnitude (intensity) relationship
between them is the same as that between P and
nP. This means that the DDS transforms one satura-
tion value to another uniquely. DDS reduces colour
intensity but does not alter the intensity relationship
among colours with the same hue and saturation. For
a given hue and saturation, the relative brightness of
colours remains unchanged after DDS.

5.6.2.4 For colours with the same intensity
but different saturation, DDS
results in higher intensity for more
saturated (purer) colours

According to the definition of colour intensity of
a colour P in formula (5.1), DDS shifts the colour P
to a colour Pk with intensity

Ik ¼ 1ffiffiffi
3

p ðr� kaþ g� kaþ b� kaÞ

¼ 1ffiffiffi
3

p ðrþ gþ b� 3kaÞ

¼ I�
ffiffiffi
3

p
ka:

ð5:42Þ

Colours with the same intensity but different satu-
ration values have the same sum of r, g and b but
different values for a (the minimum of r, g and b).
The higher the saturation, the smaller the value of
a and the greater the value of Ik produced by the
DDS according to formula (5.42). This effect is
illustrated in Figure 5.11b where colours P1 and P2
have the same intensity (OD). After reducing the
same proportion of their achromatic components
by DDS, the intensity of the less saturated colour
P1k is less than that of the more saturated colour
P2k (OD1k <OD2k). For information enhancement,
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this property has the positive effect of increasing
the variation of colours with the same intensity but
different saturation in terms of differences in both
intensity and saturation values.

5.7 Summary

The composition of three primaries, red, green and
blue, produces any colour according to the tristim-
ulus theory, while the colour quality is described
as intensity, hue and saturation. The RGB–IHS
transformation and the inverse transformation
IHS–RGB transformation are similar to a 3D
Cartesian–conical coordinate transformation and
can be derived from either 3D geometry or matrix
operations for coordinate rotations of the RGB
colour cube.

The RGB–IHS and IHS–RGB transformations
allow us to manipulate colour intensity, hue and
saturation components separately and with great
flexibility. One major application is the satura-
tion-stretch-based decorrelation stretch technique
that enhances image colour saturation without al-
tering the hues of the colours. The effects are the
same as reducing the inter-band correlation between
the three bands for the RGB colour composition.
For the same purpose, a shortcut algorithm of
processing is found, the DDS (Direct Decorrelation
Stretch). Based on colour vector decomposition in
achromatic and chromatic components, the DDS
performs the saturation stretch directly in the RGB
domain without involving the RGB–IHS and
IHS–RGB transformations.

Both intensity and saturation are either defined
by or affected by the illumination under which

objects are imaged. The hue is, however, by defini-
tion entirely independent of illumination condition
and therefore topographic shading. The hue of a
colour is actually the spectral property coding.
An HRGB colour composite technique is thus
introduced that can code the spectral property of
up to nine spectral bands into various colours to
generate an information-rich colour image without
the effects of topographic shadows, though the
image is actually difficult for visual perception and
interpretation.

Questions

5.1 Use a diagram of the RGB colour cube to
explain the mathematical definition and physi-
cal meaning of intensity, hue and saturation.

5.2 What are the value ranges of intensity, hue and
saturation according to the RGB colour cube
model of the RGB–IHS transformation?

5.3 Why is RGB–IHS a useful image processing
technique?

5.4 Describe, with the aid of diagrams, the princi-
ple of IHS decorrelation stretch.

5.5 Describe the major steps of IHS decorrelation
stretch.

5.6 What is the drawback of stretching the hue
component in the IHS decorrelation stretch?
Can the value range of the hue component be
increased without stretching the hue compo-
nent directly and, if so, how can it be achieved?

5.7 Use a diagram to explain the principle of DDS.
In what senses are the DDS and the IHSDS
similar as well as different?
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6
Image Fusion Techniques

The term ‘image fusion’ has become very widely
used in recent years, but often to mean quite differ-
ent things. Some people regard all image enhance-
ment techniques as image fusion but in general
image fusion refers specifically to techniques for
integrating images or raster datasets of different
spatial resolutions, or with different properties, to
formulate new images. In this book, we take the
latter, narrower definition and, in this chapter, fol-
lowing directly from the topics discussed in the
previous chapters, we introduce several commonly
used simple image fusion techniques for multi-
resolution and multi-source image integration.

6.1 RGB–IHS transformation as a
tool for data fusion

The RGB–IHS transformation can be used as a tool
for data fusion as well as enhancement. A typical
application is to fuse a low-resolution colour com-
positewith a high-resolution panchromatic image to
improve spatial resolution. With regard to optical
sensor systems, image spatial resolution and spec-
tral resolution are contradictory quantities. For a
given SNR, a higher spectral resolution (narrower
spectral band) is usually achieved at the cost of
spatial resolution. Image fusion techniques are
therefore useful for integrating a high spectral
resolution image with a high spatial resolution
image, such as Landsat TM (six spectral bands with

30m resolution) and SPOTPan (panchromatic band
with 10m resolution), to produce a fused image
with high spectral and spatial resolutions. Using the
RGB–IHS transformation this can be done easily by
replacing the intensity component of a colour com-
posite with a high-resolution image as follows:

1. Rectify the low-resolution colour composite im-
age (e.g. a TM image) to the high-resolution
image of the same scene (e.g. a SPOT panchro-
matic image). The rectification can be done the
other way around, that is from high resolution to
low resolution but, in some image processing
software packages, the lower resolution image
will need to be interpolated to the same pixel size
as the high-resolution image.

2. Perform the RGB–IHS transformation on the
low-resolution colour composite image.

3. Replace the intensity component, I, by the high-
resolution image.

4. Perform the reverse IHS–RGB transformation.

The resultant fused image is a mixture of spectral
information from the low-resolution colour com-
posite and high spatial resolution, which better
shows spatial textures and has improved overall
resolution. Figure 6.1 shows a colour composite of
TM bands 541 in RGB with a BCET stretch in
Figure 6.1a, SPOT Pan in Figure 6.1b and the
TM–SPOT Pan fusion image in Figure 6.1c. The
fused image presents more detailed topographic/
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Figure 6.1 TM and SPOT Pan fusion results of several image fusion techniques: (a) a colour composite of TM bands
541RGB with BCET; (b) SPOT Pan image of the same area; (c) the IHS fusion image of TM 541 and SPOT Pan; (d) the
Brovey transform fusion image; (e) the SFIM fusion imagewith 5�5 smoothing filter; and (f) the SFIM fusion imagewith
3�3 smoothing filter
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textural information, introduced by the SPOT
Pan image, and while preserving the spectral
information from the three TM spectral bands;
unfortunately this may occur with considerable
spectral (colour) distortion. The colour distortion
can be significant if the spectral range of the
three TM bands for colour composition is very
different from that of the panchromatic band. In
this case the intensity component, calculated as the
summation of the three TM bands according to
formula (5.1), will be different from the SPOT
Pan replacing it and, as a consequence, colour
distortion is introduced.

In the same way, RGB–IHS can also be used for
multi-source data integration such as the fusion of
multi-spectral image datawith raster geophysical or
geochemical data, as outlined below:

1. Co-register the datasets to be fused.
2. RGB–IHS transformation.
3. Replacement of I component by a geophysical or

geochemical dataset.
4. IHS–RGB transformation.

The resultant image contains both spectral infor-
mation of the original image bands and geophy-
sical or geochemical information as intensity
variation. The interpretation of such fused images
demands a thorough understanding of the input
datasets. A more productive method is to use the
so-called colour drape technique in which the
geophysical or geochemical dataset is used as if
it were a raster surface, such as a digital elevation
model, with a colour composite image draped
over it in a 3D perspective view. This concept
will be discussed further in Part Two (Section
16.3.2).

6.2 Brovey transform
(intensity modulation)

The Brovey transform is a shortcut to image fusion,
comparedwith the IHS image fusion technique, and
is based on direct intensitymodulation. LetR,G and
B represent three image bands displayed in red,
green and blue, and let P represent the image to be
fused as the intensity component of the colour
composite. The Brovey transform is then defined

by the following:

Rb ¼ 3RP

RþGþB

Gb ¼ 3GP

RþGþB
ð6:1Þ

Bb ¼ 3BP

RþGþB
:

It is obvious that the sum of the three bands in the
denominator is equivalent to the intensity compo-
nent of the colour composite and the Brovey trans-
form can be simply rewritten as

Rb ¼ R� P=I

Gb ¼ G� P=I

Bb ¼ B� P=I:

ð6:2Þ

The operations of the Brovey transform are therefore
simply each band multiplied by the ratio of the
replacement image over the intensity of the corres-
ponding colour composite. If image P is a higher
resolution image, then formulae (6.2) performs image
fusion to improve spatial resolutionand, ifP is a raster
dataset of a different source, formula (6.2) then per-
forms multi-source data integration. The Brovey
transform achieves a similar result to that of the IHS
fusion technique without carrying out the whole
process of RGB–IHS and IHS–RGB transformations
and is thus farsimplerandfaster. It does,however, also
introduce colour distortion, as shown in Figure 6.1d.

6.3 Smoothing-filter-based
intensity modulation

Both the IHS and Brovey transform image fusion
techniques can cause colour distortion if the spectral
range of the intensity replacement (or modulation)
image is different from that of the three bands in the
colour composite. This problem is inevitable in
colour composites that do not use consecutive spec-
tral bands, and could become serious in vegetated
and agricultural scenes if the images to be fusedwere
acquired in different growing seasons. Preserving
the original spectral properties is very important in
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remote sensing applications that rely on spectral
signatures, such as lithology, soil and vegetation.
The spectral distortion introduced by these fusion
techniques is uncontrolled and not quantified
because the images for fusion are often acquired by
different sensor systems, on different dates and/or in
different seasons. Fusion in this context cannot
therefore, in any way, be regarded as spectral
enhancement and should be avoided to prevent
unreliable interpretations. In seeking a spectral pre-
servation image fusion technique that also improves
spatial resolution, an image fusion technique,
namely smoothing-filter-based intensitymodulation
(SFIM), has been developed (Liu, 2000).

6.3.1 The principle of SFIM

The DN value of a daytime optical image of
reflective spectral band l is mainly determined by
two factors: the solar radiation impinging on the
land surface, irradiance E(l), and the spectral
reflectance of the land surface r(l), DNðlÞ ¼
rðlÞEðlÞ.

Let DN(l)low represent a DN value in a lower
resolution image of spectral band l and DN(g)high
the DN value of the corresponding pixel in a
higher resolution image of spectral band g , and
assume that the two images are taken in similar
solar illumination conditions (such as the case of
TM and SPOT). Then

DNðlÞlow ¼ rðlÞlowEðlÞlow and

DNðgÞhigh¼ rðgÞhighEðgÞhigh:

After co-registering the lower resolution image
precisely to the higher resolution image and mean-
while interpolating the lower resolution image to
the same pixel size of the higher resolution image,
the SFIM technique is defined as

DNðlÞsim ¼ DNðlÞlow � DNðgÞhigh
DNðgÞmean

¼ rðlÞlowEðlÞlow � rðgÞhighEðgÞhigh
rðgÞlowEðgÞlow

� rðlÞlowEðlÞhigh
ð6:3Þ

where DN(l)sim is the simulated higher resolution
pixel corresponding to DN(l)low and DN(g)mean the
local mean of DN(g)high over a neighbourhood
equivalent to the resolution of DN(l)low.

For a given solar radiation, irradiance upon a land
surface is controlled by topography. If the two
images are quantified to the same DN range, we
can presume that E(l)�E(g) for a given resolu-
tion because both vary with topography in the same
way as denoted in Equation 3.27. We can also
presume that r(g)low� r(g)high if there is no signifi-
cant spectral variation within the neighbourhood
for calculating DN(g)mean. Thus, in

rðlÞlowEðlÞlow � rðgÞhighEðgÞhigh
rðgÞlowEðgÞlow

;

E(l)low and E(g)low cancel each other; r(g)low and
r(g)high also cancel each other; and E(g)high can be
replaced by E(l)high. We then have the final simple
solution of formula (6.3).

The local mean DN(g)mean is calculated for
every pixel of the higher resolution image using
a convolution smoothing filter. The filter kernel
size is decided by the resolution ratio between the
higher and lower resolution images. For instance,
to fuse a 30m resolution TM band image with a
10m resolution SPOT Pan image, the minimum
smoothing filter kernel size for calculating the
local mean of the SPOT Pan image pixels is
3� 3 defined as

1

9

1 1 1

1 1 1

1 1 1

0
B@

1
CA:

The image of DN(g)mean is equivalent to the
image of DN(l)low in topography and texture
because they both have a pixel size of the higher
resolution image and a spatial resolution of the
lower resolution image. The crucial approxima-
tion, E(l)�E(g), for simplifying formula (6.3),
therefore stands and the approach of SFIM is
valid. The final result, the image of DN(l)sim, is
a product of the higher resolution topography
and texture, E(l)high, introduced from the higher

(6.3)
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resolution image, and the lower resolution spec-
tral reflectance of the original lower resolution
image, r(l)low. It is therefore independent of the
spectral property of the higher resolution image
used for intensity modulation. In other words,
SFIM is a spectral preservation fusion technique.
This is the major advantage of SFIM over the IHS
and Brovey transform fusion techniques.

Since the spectral difference between the
lower and the higher resolution images is not fun-
damental to the operations, formula (6.3) can be
more concisely presented as a general SFIM pro-
cessing algorithm:

IMAGESFIM ¼ IMAGElow � IMAGEhigh

IMAGEmean
ð6:4Þ

where IMAGElow is a pixel of a lower resolution
image co-registered to a higher resolution image of
IMAGEhigh, and IMAGEmean a smoothed pixel of
IMAGEhigh using an averaging filter over a neigh-
bourhood equivalent to the actual resolution of
IMAGElow.

The ratio between IMAGEhigh and IMAGEmean in
formula (6.4) cancels the spectral and topographical
contrast of the higher resolution image and retains
the higher resolution edges only, as illustrated by a
SPOT Pan image in Figure 6.2. SFIM can thus be
understood as a lower resolution image directly
modulated by higher resolution edges and the
result is independent of the contrast and spectral
variation of the higher resolution image. SFIM is
therefore reliable for the spectral properties as well as
for the contrast of the original lower resolution image.

6.3.2 Merits and limitation of SFIM

Figure 6.1 illustrates the TM–SPOT Pan fusion
results produced by the IHS, Brovey transform and
SFIM fusion techniques. It is clear that the SFIM
result (Figure 6.1e) demonstrates the highest spec-
tral fidelity to the original TM band 541 colour
composite (Figure 6.1a) showing no noticeable
colour differences, while the fusion results of both
the IHS and Brovey transforms (Figure 6.1c and d
respectively) present considerable colour distortion
as well as contrast changes. In particular, a patch of
thin cloud and shadow at the bottom right and
central part of the SPOT Pan image are fused into
the IHS and Brovey transform fusion images, which
are not shown in the SFIM fusion images because
they are cancelled out by the ratio between the
original SPOT Pan image and its smoothed version
as shown in Figure 6.2c.

SFIM is sensitive to the accuracy of image co-
registration. Edges with imperfect co-registration
will become slightly blurred because the cancella-
tion of E(l)low and E(g)low in formula (6.3) is no
longer perfect in such a case. This problem can be
eased by using a smoothing filter with a larger kernel
than the resolution ratio. In such a case, E(g)low
represents lower frequency information thanE(l)low
in formula (6.3). The division between the two does
not lead to a complete cancellation and the residual is
the high-frequency information of the lower resolu-
tion image (relating to edges). Thus, in the fused
image, themain edges appearing in both imageswill
be sharpened while the subtle textural patterns,

Figure 6.2 (a) Original SPOT Pan image; (b) smoothed SPOT Pan imagewith a 5� 5 smoothing filter; and (c) the ratio
image between (a) and (b)
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which are recognizable only in the higher resolution
image, will be retained. Figure 6.1e is processed
using SFIM with a 5� 5 smoothing filter; the blur-
ring effects are effectively suppressed while the
spatial details are significantly improved. In com-
parison, SFIM with a 3� 3 smoothing filter in
Figure 6.1f is rather blurred, which cancels out the
improvement of spatial resolution. Thus a filter
kernel at least one step larger than the resolution
ratio between the low- and high-resolution images is
recommended.Another way to improve the SFIM
fusion quality is to achieve precise pixel-to-pixel
image co-registration, and this will be introduced in
Chapter 9.

Attention should be paid to the following issues:

1. As already mentioned, it is important that for the
SFIM operations defined by Equation 6.4, the
lower resolution image must be interpolated to
the same pixel size as the higher resolution
image by the co-registration process; that is,
IMAGElow must have the same pixel size as
IMAGEhigh even though it is in a lower resolu-
tion. For the lower resolution image interpola-
tion, simple pixel duplication must be avoided;
instead, bilinear, biquadratic or bicubic resam-
pling should be applied.

2. As SFIM is based on a solar radiation model, the
technique is not applicable to the fusion of
images with different illumination and imaging
geometry, such as TM and ERS-1 SAR, or to
integrate multi-source raster datasets.

3. If the spectral range of the higher resolution
image is the same as that of the lower resolution
colour composite and they are taken in similar
solar radiation conditions, none of the three
fusion techniques will introduce significant
spectral (colour) distortion. In this case, the IHS
and Brovey transform fusion techniques are
preferable to SFIM for producing sharper
images.

6.4 Summary

Image fusion is a very active research field. In this
chapter, we introduced the three simplest and most

popular image fusion techniques that can be per-
formed by commonly used image processing soft-
ware packages.

For image fusion aiming to improve the spatial
resolution of multi-spectral images using panchro-
matic images, the minimization of spectral dis-
tortion is one of the most important issues,
while achieving the sharpest image textures is an-
other, not to mention economizing on the proces-
sing speed. SFIM provides a spectral preservation
image fusion solution but its high requirements in
terms of image co-registration accuracy often result
in slightly blurred edge textures. This weakness can
be easily amended by using a larger smoothing
filter. A more thorough solution to overcome the
weakness is a new method developed for pixel-to-
pixel image co-registration at sub-pixel accuracy as
introduced in Chapter 9. On the other hand, the
RGB–IHS and Brovey transform-based techniques
remain popular because of their simplicity and
robustness, though spectral distortion is often
unavoidable.

In seeking robust spectral preservation image
fusion techniques, some techniques have been de-
veloped based on wavelet transforms. Considering
the current general availability, robustness, mathe-
matic complexity and processing efficiency of such
wavelet-transform-based techniques, we decide not
to cover this branch so as to keep the contents
concise and essential.

Questions

6.1 How could you improve the spatial resolution
of a 30m resolution TM colour composite with
a 10m resolution SPOT panchromatic image,
usingRGB–IHS transformation and theBrovey
transform?

6.2 Explain the major problem of image fusion
using the RGB–IHS and Brovey trans-
formations.

6.3 Describe the principle and derivation of the
SFIM method, explaining why SFIM is a spec-
tral preservation image fusion method.

6.4 What is the main problem for SFIM and how
should it be dealt with?
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7
Principal Component Analysis

Principal component analysis (PCA) is a general
method of analysis for correlated multi-variable
datasets. Remotely sensed multi-spectral imagery
is typical of such datasets for which PCA is an
effective technique for spectral enhancement and
information manipulation. PCA is based on linear
algebraicmatrix operations andmulti-variable statis-
tics. Here we focus on the principles of the PCA
technique and its applications and avoid going into
the mathematical details since these comprise fairly
standard linear algebraic algorithms which are im-
plemented in most image processing software
packages.

Relying on the concept of PCA as a coordinate
rotation, we expand our discussion to the general
concept of physical-property-orientated image co-
ordinate transformation. This discussion also leads
to the widely used tasselled cap transformation in
the derivation of multi-spectral indices of bright-
ness, greenness and wetness.

PCA can effectively concentrate the maximum
information of many correlated image spectral
bands into a few uncorrelated principal components
and therefore can reduce the size of a dataset and
enable effective image RGB display of its informa-
tion. This links to the statistical methods for band
selection that aim at selecting optimumband triplets
with minimal inter-band correlation and maximum
information content.

7.1 Principle of PCA

As shown in Table 7.1, the six reflective spectral
bands of a TM image are highly correlated. For
instance, the correlation between band 5 and band 7
is 0.993. Thismeans that there is 99.3% information
redundancy between these two bands and only 0.7%
of unique information! This is the general case
for multi-spectral Earth observation image data
because topography represents the image features
common to all bands. The narrower the spectral
ranges of the image bands, the higher the correlation
between the adjacent bands. As such, multi-spectral
imagery is not efficient for information storage.

Consider an m-band multi-spectral image as an
m-dimensional raster dataset in an m dimension
orthogonal coordinate system, forming an m-
dimensional ellipsoid cluster. Then the coordinate
system is oblique to the axes of the ellipsoid data
cluster if the image bands are correlated. The axes of
the data ellipsoid cluster formulate an orthogonal
coordinate system in which the same image data are
represented by n (n�m) independent principal
components. In other words, the principal compo-
nents (PCs) are the image data representation in
the coordinate system formed by the axes of the
ellipsoid data cluster. Thus, PCA is a coordinate
rotation operation to rotate the coordinate system of
the original image bands to match the axes of the

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
� 2009 John Wiley & Sons, Ltd



ellipsoid of the image data cluster. As shown by the
2D illustration in Figure 7.1a, suppose the image
data points form an elliptic cluster; the aim of PCA
is to rotate the orthogonal coordinate systemof band
1 and band 2 to match the two axes of the ellipsoid,
PC1 and PC2. The coordinates of each data point in
the PC coordinate system will be the DNs of the
corresponding pixels in the PC images. The first PC
is represented by the longest axis of the data cluster,
the second PC by the second longest, and so on. The
axes representing high-order PCs may be too short
to represent any substantial information and then
the apparent m-dimensional ellipsoid is effectively
degraded to n (n <m) independent dimensions. For
instance, as shown in Figure 7.1b, the 3D data
cluster is effectively 2D as the PC3 axis is very
short, representing little independent information.
The same data can then be effectively represented
by PC1 and PC2 in a 2D coordinate system with
little information loss. In this way, PCA reduces

image dimensionality and represents nearly the
same image information with fewer independent
dimensions in a smaller datasetwithout redundancy.
In summary, PCA is a linear transformation con-
verting m correlated dimensions to n (n�m) inde-
pendent (uncorrelated) dimensions. This is equiva-
lent to a coordinate rotation transform to rotate the
original m axes oblique to the ellipsoid data cluster
to match the orientation of the axes of the ellipsoid
in n independent dimensions, and thus the image
data represented by each dimension are orthogonal
to (independent of) all the other dimensions. For
image processing, PCA generates uncorrelated PC
images from the originally correlated image bands.

Let X represent an m-band multi-spectral image;
then its covariance matrix Sx is a full representation
of the m-dimensional ellipsoid cluster of the
image data. The covariancematrix is a non-negative
definite matrix and it is symmetric along its major
diagonal. Such a matrix can be converted into a

Figure 7.1 Principle of principal component transformation: (a) a 2D case of PCA; and (b) a 3D case of PCA. The 3D
cluster is effectively two dimensional as the value range of PC3 is very narrow and the data distribution is mainly in an
elliptic plate

Table 7.1 Correlation matrix of bands 1–5 and 7 of a TM sub-scene

Correlation TM1 TM2 TM3 TM4 TM5 TM7

TM1 1.000 0.962 0.936 0.881 0.839 0.850
TM2 0.962 1.000 0.991 0.965 0.933 0.941
TM3 0.936 0.991 1.000 0.979 0.955 0.964
TM4 0.881 0.965 0.979 1.000 0.980 0.979
TM5 0.839 0.933 0.955 0.980 1.000 0.993
TM7 0.850 0.941 0.964 0.979 0.993 1.000
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diagonal matrix via basic matrix operations. The
elements on the major diagonal of the covariance
matrix are the variance of each image band, while
the symmetrical elements off the major diagonal
are the covariance between two different bands.
For instance, the covariance matrix of a four-band
image is

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

0
BBBB@

1
CCCCA:

For the elements not on the major diagonal in this
matrix, sij¼sji. The elements s12 and s21 both are
the covariance between band 1 and band 2 and so on.
If band 1 and band 2 are independent, then their
covariance s12¼s21¼ 0. This means that indepen-
dent variables in a multi-dimensional space should
have a diagonal covariance matrix. Thus an image
dataset of n independent PCs should have a diagonal
covariance matrix.

In mathematics, PCA is simply to find a transfor-
mationG that diagonalizes the covariancematrixSx

of them-band imageX to produce an n PC imageY
with a diagonal covariancematrixSy. The rank ofSy

is n and n¼m if them bands are independent, andSx

is then a full-rank matrix, otherwise n <m with
reduced dimensionality.

The covariance matrix of an m-band image X is
defined as

Sx ¼ e ðx�mxÞðx�mxÞT
n o

� 1

N� 1

XN
j¼1

ðxj �mxÞðxj �mxÞT ð7:1Þ

where xj¼ (xj1, xj2, . . ., xjm)
T (xj2 x, j¼ 1, 2, . . .,N)

is any m-dimensional pixel vector of an m-band
image X, N the total number of pixels in the image
X and mx the mean vector of the image X. The
operation e is a mathematical expectation.

mx ¼ e xf g ¼ 1

N � 1

XN
j¼1

xj: ð7:2Þ

Since the covariance matrix Sx is a symmetrical,
non-negative definite matrix, there exists a linear

transformation G that diagonalizes Sx. Let

y ¼ Gx ð7:3Þ
subject to the constraint that the covariance matrix
of y(yj2 y, j¼ 1, 2, . . ., N) is diagonal. In Y space
the covariance matrix is, by definition,

Sy ¼ efðy�myÞðy�myÞTg ð7:4Þ
where my is the mean vector of the transformed
image Y. Thus we have

my ¼ efyg ¼ efGxg ¼ Gefxg ¼ Gmx ð7:5Þ

Sy ¼ efðGx�GmxÞðGx�GmxÞTg
¼Gefðx�mxÞðx�mxÞTgGT

¼GSxG
T:

ð7:6Þ

As Sy is the diagonal matrix derived from Sx,
according to the rules of matrix operations we can
prove that the transformation G is the n�m trans-
posed matrix of the eigenvectors of Sx:

G ¼

g11 g12 � � � g1m

g21 g22 � � � g2m

..

. ..
. ..

. ..
.

gn1 gn2 � � � gnm

0
BBBBB@

1
CCCCCA ¼

gT1
gT2

..

.

gTn

0
BBBBB@

1
CCCCCA: ð7:7Þ

Sy is a diagonal matrix with the eigenvalues of Sx as
non-zero elements along the diagonal:

Sy ¼

l1 0

l2

. .
.

0 ln

0
BBBBB@

1
CCCCCA

l1 > l2 > � � � > ln:

ð7:8Þ

The eigenvalue li is the variance of the PCi image
and is proportional to the information contained in
PCi. As indicated in (7.8), the information content
decreases with the increment in the PC rank.

In computing, the key operation of PCA is to find
eigenvalues of Sx from which the eigenvector ma-
trix G is derived. The eigenvalues of Sx can be
calculated from its characteristic equation:

jSx � lIj ¼ 0 ð7:9Þ
where I is an m-dimension identity matrix.
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An eigenvector of matrix Sx is defined as a vector
g(g2G) that satisfies

Sxg ¼ lg or ðSx � lIÞg ¼ 0: ð7:10Þ
This formula is called the characteristic polynomial
of Sx. Thus, once the ith eigenvalue li is known,
then the ith eigenvector gi is determined. There are
several standard computing algorithms for numeri-
cal solutions of the characteristic equation (7.9) but
the mathematics is beyond the scope of this book.

Eigenvector G determines how each PC is com-
posed from the original image bands. In fact, each
PC image is a linear combination (a weighted
summation) of the original image bands:

PCi ¼ gTi X ¼
Xm
k¼1

gikBand k ð7:11Þ

where gik is the element of G at the ith row and kth
column, or the kth element of the ith eigenvector
gTi ¼ ðgi1; gi2; . . . ; gik; . . . ; gimÞ.

7.2 Principal component images
and colour composition

PC images are useful for reducing data dimension-
ality, condensing topographic and spectral informa-
tion, improving image colour presentation and en-
hancing specific spectral features. Here we discuss
some characteristic of PC images using an example.
The covariancematrix and eigenvectormatrix of six
reflective spectral bands of a small sub-scene of a
Landsat TM image are presented in Tables 7.2
and 7.3 and the inter-band correlation matrix is
shown in Table 7.1. The six PC images are shown
in Figure 7.2. We make the following observations:

1. The elements of g1 are all positive and therefore
PC1 (Figure 7.2a) is aweighted average of all the
original image bands. In this sense, it resembles a
broad spectral range panchromatic image. It has
a very large eigenvalue 4928.731 (PC1 variance)
and accounts for 97.4% of the information from

Table 7.2 The covariance matrix of bands 1–5 and 7 of a TM sub-scene

Covariance TM1 TM2 TM3 TM4 TM5 TM7

TM1 232.202 196.203 305.763 348.550 677.117 345.508
TM2 196.203 178.980 284.415 335.185 660.570 335.997
TM3 305.763 284.415 460.022 545.336 1083.993 551.367
TM4 348.550 335.185 545.336 674.455 1347.927 678.275
TM5 677.117 660.570 1083.993 1347.927 2802.914 1402.409
TM7 345.508 335.997 551.367 678.275 1402.409 711.647

Table 7.3 The eigenvector matrix and eigenvalues of the covariance matrix of bands 1–5 and 7 of a TM sub-scene

Eigenvectors PC1 PC2 PC3 PC4 PC5 PC6

TM1 0.190 �0.688 �0.515 �0.260 �0.320 �0.233
TM2 0.183 �0.362 0.032 0.050 0.136 0.902
TM3 0.298 �0.418 0.237 0.385 0.638 �0.354
TM4 0.366 �0.136 0.762 �0.330 �0.389 �0.079
TM5 0.751 0.433 �0.296 �0.318 0.242 0.013
TM7 0.378 0.122 �0.093 0.756 �0.511 0.011

Eigenvalues 4928.731 102.312 15.581 9.011 3.573 1.012
Information 97.4% 2.02% 0.31% 0.18% 0.07% 0.02%
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all six bands. For a fixed DN range, more infor-
mation means a higher SNR. This conforms to
the conclusion that image summation increases
SNR as stated in Section 3.1.

2. PC1 concentrates features common to all six
bands. For Earth observation satellite images,
this common information is usually topography.

3. The elements of gi (i > 1) are usually amixture of
positive and negative values and thus PC images
of higher rank (>1) are linear combinations of
positive and negative images of the original
bands.

4. The higher ranked PCs lack topographic features
and show more spectral variation. They all have
significantly smaller eigenvalues (PC variances)
than PC1. The eigenvalues decrease rapidly with
the increment of PC rank and so have progres-
sively lower SNRs, which is illustrated by their
increasingly noisy appearance. The PC6 image
is almost entirely noise and contains little infor-
mation, as indicated by the very small variance

1.012. In this sense, PC6 can be disregarded from
the dataset and thus the effective dimensionality
is reduced to five from the original six with
negligible information loss of 0.02%.

We can look at individual PC images or display
three PCs as a colour composite. As PC1 is mainly
topography, colour composites excluding PC1 may
better present spectral information with topography
subdued. PCs represent condensed and independent
image information and therefore produce more
colourful (i.e. informative) colour composites.
However, here we have a problem in that a PC is
a linear combination of the original spectral bands,
so its relationship to the original spectral signatures
of targets representing ground objects is no longer
apparent.

To solve this problem, a feature-oriented PC
selection (FPCS) method for colour composition
was proposed by Crosta and Moore (1989). The
technique provides a simple way to select PCs from

Figure 7.2 PC images derived from six reflective spectral bands of a sub-scene of a TM image. The PC1–PC6 images are
arranged from top left to bottom right
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the spectral signatures of significant spectral targets
(e.g. minerals) to enhance the spectral information
of these minerals in the PC colour composite. The
technique involves examination of the eigenvectors
to identify the contributions from original bands
(either negative or positive) to each PC. Specific
PCs can then be selected on the basis of the major
contributors that are likely to display the desired
targets (spectral features).

Let us look at the eigenvectors inTable 7.3. PC3 is
dominated by large positive loading (0.762) from
TM4 caused by the high reflectance of vegetation in
NIRand largenegative loading (�0.515)of theblue-
band TM1. The red-band TM3 and the SWIR band
TM5 give the second largest positive and negative
contribution respectively. PC3 therefore highlights
vegetation and particularly vegetation on red soils.
The largest positive contribution to PC4 is from the
clay absorption SWIR band TM7 (0.756) and the
otherelementsofPC4includeapositivecontribution
from TM3 and negative contributions of similar
amounts from TM1, TM4 and TM5. PC4 therefore
enhances ferric iron and lacks the signature of clay
minerals. PC5canbe considered as a combination of
the difference between TM5 and TM7, highlighting
clayminerals,andbetweenTM3andTM1,highlight-
ing ironoxides, togetherwithanegativecontribution
from vegetation. PC5 is therefore effective for indi-
catinghydrothermal alterationminerals by its strong
co-occurrence of clay minerals and iron oxide.
Figure 7.3a is a colour composite displaying PC4
in red, PC3 in green and PC5 in blue. Apart from
showing vegetation in green and red soils/regoliths
inred, the imageeffectivelyhighlightshydrothermal
alteration zones of a known epithermal gold deposit
distinctively in blue. Geologically the alteration
zone is characterized by high concentrations of
alteration-induced clay minerals and gossaniferous
iron oxides on the surface of outcrops.

7.3 Selective PCA for PC
colour composition

Theeigenvalues representing thevariances ofPCs in
Table 7.3 indicate that for commonly used, remotely
sensed multi-spectral image data, a very large por-
tionof information (datavariance) is concentrated in
PC1and that this relates to the irradiancevariationon

topography. Higher rank PCs contain significantly
less information but it ismore relevant to the spectral
signatures of specific ground objects. Colour com-
posites of PCs are often very effective for highlight-
ing such ground objects andmineralswhichmay not
distinguishable in colour composites of the original
bands. In PC colour composites noise may be exag-
gerated because the high rank PCs contain signifi-
cantly less information than lower rankPCs and they
have very low SNRs.When PC images are stretched
and displayed in the same value range, the noise in
higher rank PCs is improperly enhanced.

We would like to use three PCs with comparable
information levels for colour composite generation.
Chavez (1989) introduced a general approach, re-
ferred to as selective principal component analysis
(SPCA), to produce PC colour composites in which
the maximum information of either topographic or
spectral features is condensed and in which the
information content from each PC displayed is
better balanced. There are two types of SPCA:
dimensionality and colour confusion reduction and
spectral contrast mapping.

7.3.1 Dimensionality and colour
confusion reduction

The spectral bands of a multi-spectral image are
arranged into three groups and each group is com-
posed of highly correlated bands. PCA is performed
on each group and then the three PC1s derived from
these three groups are used to generate an RGB
colour composite. As the bands in each group are
highly correlated, PC1 concentrates the maximum
informationof eachgroup.For six reflective spectral
bands of a TM or ETMþ image, the technique may
condense more than 98% variance (information) in
the derived PC1 colour composite. The recom-
mended groups for six reflective spectral bands of
TM or ETMþ images are given in Table 7.4.

The approach sounds clever but it is actually
equivalent to generating a colour composite using
broader spectral bands, given that PC1 is a posi-
tively weighted summation of the bands involved
in the PCA. As illustrated in Figure 7.3b, it is
essentially a colour composite of a broad visible
band in blue, an NIR band in green and a broad
SWIR band in red.
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7.3.2 Spectral contrast mapping

A more interesting and useful approach is spectral
contrast mapping, where the primary objective is to
map the contrast between different parts of the
spectrum, and so to identify information unique to
each band rather than information in common. For
this purpose, PC2s derived from band pairs are used

instead of PC1s. By using only two bands as inputs,
the information that is common to both bands is
mapped to PC1 and the unique information is
mapped to PC2. In general, low or medium corre-
lation between the bands in each pair is preferred for
this approach. The recommended grouping for the
six reflective spectral bands of TM/ETMþ is listed
in Table 7.5 as an example.

Figure 7.3 PC colour composites derived from a TM sub-scene image: (a) colour composite of PC4 in red, PC3 in green
and PC5 in blue; (b) SPCA colour composite using PC1s derived from band groups listed in Table 7.4; (c) SPCA (spectral
contrast mapping) colour composite using PC2s derived from band groups listed in Table 7.5; (d) FPCS spectral contrast
mapping using PC2s and PC3 derived from band groups listed in Table 7.6
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Based on the above principle, groups of three or
more bands may also be used for spectral contrast
mapping. The technique can generate spectrally
informative colour composites with significantly
reduced topographic shadow effects, as illustrated
in Figure 7.3c. In this colour composite, PC2 from
bands 1 and 3 shows red spectral contrast relating to
red soils and iron oxides, PC2 from bands 2 and 4
relates to vegetation, while PC2 from bands 5 and 7
is effectively highlighting the spectral contrast of
clay alteration minerals. The striped pattern in the
sea in this image is less obvious than that in the
PC435 RGB colour composite in Figure 7.3a, im-
plying better SNR.

7.3.3 FPCS spectral contrast mapping

The outcome of the spectral contrast mapping
largely depends on the spectral band groupings.
Knowing the spectral signatures of intended targets,
we can use the FPCSmethod to decide the grouping
of bands and thus the selection of PCs for the final
RGB display. We demonstrate the principle of this
approach with the same example as above.

From the eigenvector matrix in Table 7.3, we see
that none of PCs picks up the ‘red-edge’ feature
diagnostic of vegetation or the absorption feature of

clay minerals characterized by the difference be-
tween TM5 and TM7. We therefore consider the
grouping listed in Table 7.6. From the eigenvector
matrices in Table 7.7, we make the following
observations:

1. PC2 derived from TM bands 1, 2 and 3 is
essentially the difference between red (TM3)
and blue (TM1) and it therefore enhances red
features like iron oxides. This PC2 is chosen to
display in red.

2. PC2 derived from TM bands 2, 3 and 4 is
dominated by the positive contribution of NIR
(TM4) and balanced by a negative contribution
from red (TM3) and green (TM2). It therefore
highlights healthy vegetation. This PC2 is cho-
sen to display in green.

3. PC3 derived from TM bands 3, 5 and 7 is a
summation of TM3 and TM5, subtracting TM7,
and therefore enhances clay alteration minerals
and iron oxides. This PC3 is chosen to display in
blue.

Table 7.4 Dimensionality and colour confusion
reduction for TM or ETMþ

Groups PCA Colour

TM1, 2, 3 PC11,2,3 Blue
TM4 Green
TM5, 7 PC15,7 Red

Table 7.5 TM or ETMþ spectral bands grouping for
spectral contrast mapping

Groups PCA Colour

TM1, 3 PC21,3 Red
TM2, 4 PC22,4 Green
TM5, 7 PC25,7 Blue

Table 7.7 Eigenvector matrices of the three band
groups for FPCS spectral contrast mapping

Eigenvector PC1 PC2 PC3

TM1 0.507 �0.834 �0.218
TM2 0.458 0.046 0.888
TM3 0.731 0.549 �0.405

TM2 0.366 �0.510 �0.778
TM3 0.593 �0.517 0.617
TM4 0.717 0.687 �0.113

TM3 0.331 0.920 0.210
TM5 0.843 �0.388 0.372
TM7 0.424 0.054 �0.904

Table 7.6 FPCS spectral contrast mapping for
TM/ETMþ

Groups Intended targets FPCS Colour

TM1, 2, 3 Red soils and
iron oxide

PC21,2,3 Red

TM2, 3, 4 Vegetation PC22,3,4 Green
TM3, 5, 7 Clay minerals PC33,5,7 Blue

84 PART ONE IMAGE PROCESSING



The resultant FPCS spectral contrast mapping
colour composite in Figure 7.3d resembles the
simple SPCA spectral contrast mapping colour
composite in Figure 7.3c but the signatures of red
soils/regoliths, vegetation and clay minerals are
more distinctively displayed in red, green and blue.

After all the effort of SPCA, Figure 7.3 indicates
that both the spectral contrastmapping and the FPCS
spectral contrast mapping images are less colourful
than the simple colour composite of PCs. One of the
reasons for this is that the selectedPCs from the three
different bandgroups are not independent. Theymay
be well correlated even though the PCs within each
group are independent of each other. For instance, if
wegroupTMbands 1 and5 as onegroup andbands 2
and 7 as another, then the PC2s derived from the two
groups will be highly correlated because both bands
1 and 2 and bands 5 and 7 are highly correlated. The
way that the image bands are grouped will control
the effectiveness of spectral contrast mapping.

7.4 Decorrelation stretch

A very important application of PCA is decorrela-
tion stretch (DS). We have already learnt about
two saturation-stretch-based DS techniques in
Chapter 5, but the initial concept of the DS, as
proposed by Taylor (1973), was based on PCA and
further developed by Soha and Schwartz (1978).

The interpretation of PC colour composites is not
straightforward and ordinary colour composites of
the original image bands are often needed for
reference. The PCA-based DS (PCADS) generates
a colour composite from three image bands with
reduced inter-band correlation and thus presents
image spectral information in more distinctive and
saturated colours without the distortion of hues. The
idea of PCADS is to stretch multi-dimensional
image data along their PC axes (the axes of the
data ellipsoid cluster) rather than the original axes
representing image bands. In thisway, thevolumeof
a data cluster can be effectively increased and
the inter-band correlation is reduced as illustrated
in the 2D case in Figure 7.4. PCADS is achieved in
three steps:

1. PCA to transform the data from the original
image bands to PCs.

2. Contrast enhancement on each of the PCs
(stretching the data cluster along PC axes).

3. Inverse PCA to convert the enhanced PCs back
to the corresponding image bands.

According to the PCA defined in Equation (7.6),
inverse PCA is defined as

Sx ¼ G� 1SyðGTÞ� 1: ð7:12Þ

The PCADS technique effectively improves the
colour saturation of a colour composite image with-
out changing its hue characteristics. It is similar to
IHSDS in its result but is based on quite different
principles. PCADS is statistically scene dependent
as the whole operation starts from the image covari-
ance matrix, and it can be operated on all image
bands simultaneously. IHSDS, in contrast, is not
statistically scene dependent and only operates on
three bands. Both techniques involve complicated
forward and inverse coordinate transformations. In
particular, PCADS requires quite complicated in-
verse operations on the eigenvector matrix and is
therefore not computationally efficient. The direct
decorrelation stretch (DDS) is the most efficient
technique and it can be quantitatively controlled
based on the saturation level of the image.

7.5 Physical-property-orientated
coordinate transformation
and tasselled cap
transformation

Image PCA is a rotational operation of an m-
dimensional orthogonal coordinate system for an
m-band multi-spectral image X. The rotation is
scene dependent and determined by the eigenvector
matrix G of the covariance matrix Sx. Consider the
rotation transform defined in Equation (7.3); in a
general sense, we can arbitrarily rotate the m-
dimensional orthogonal coordinate system in any
direction as defined by a transformation R:

y ¼ Rx: ð7:13Þ

Here y is a linear combination of x specified by the
coefficients (weights) in R.
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For example, a 3D rotation from x(x1, x2, x3) to
y(y1, y2, y3) is defined as

y1

y2

y3

0
B@

1
CA ¼

cos a1 cos b1 cos g1
cos a2 cos b2 cos g2
cos a3 cos b3 cos g3

0
B@

1
CA

x1

x2

x3

0
B@

1
CA

ð7:14Þ
where subscript 1 denotes the rotation angles be-
tween the y1 axis and the x1, x2, x3 axes in the
positive direction; subscript 2 the rotation angles
between the y2 axis and the x1, x2, x3 axes in the
positive direction, and so on for subscript 3.

In addition to the rotation, we can also consider a
coordinate shift, as defined by a shift vector C, and
thus Equation (7.13) is modified as

y ¼ RxþC: ð7:15Þ

Basedonimagedataanalysisofspectral signaturesof
particular targets,wecanlearn thedatadistributionof
specific physical properties of ground objects, such
as vegetation greenness, soil brightness and land
surface wetness. We can then rotate the original
imagecoordinate systemtoorientate to thedirections
of the maximum variation of these physical proper-
ties if these properties are orthogonal. This operation
is quite similar to PCA but the rotation is decided by
the transformation R as derived from sample image
data representative of the intended physical proper-
ties, rather than the eigenvector matrix G which is
derived from the image covariance matrix. As such,
the rotational transformation R is invariant to the
images taken by the same multi-spectral sensor
systemon the onehand, but is constrained andbiased
by its empirical nature on the other hand.

One of the most successful examples of the
physical-property-orientated coordinated transfor-
mation is the tasselled cap transformation initially
derived byKauth andThomas (1976) for theLandsat
MSS and then further developed by Crist and
Cicone (1984) for the Landsat TM. As shown in
Figure 7.5, the goal of the tasselled cap transforma-
tion is to transform the six reflective spectral bands
(1–5 and 7) of TM or ETMþ in VNIR and SWIR
spectral ranges, into three orthogonal components
orientated as three key properties of the land sur-
face: brightness, greenness (vigour of green vege-
tation) and wetness. The axes of brightness and
greenness define the plane of vegetation presenting
the 2D scattering of vegetation of varying green-
ness and grown on soils of different brightness,
while the axes of wetness and brightness define the
plane of soil presenting the 2D scattering of soil
brightness in relation to soil moisture. Basedmain-
ly on a TM image of North Carolina taken on 24
September 1982 together with several other TM

Greenness

Wetness

Brightness

Plane of soils 

Plane of
vegetation 

Figure 7.5 The tasselled cap transformation coordinate
system. Adapted from Mather (2004)

(b)      (a)  
Band 1 

PC1
PC2

Band 2

Band 1

PC1 
PC2

Band 2

Figure 7.4 Illustration of the decorrelation stretch in a 2D case: (a) stretching of the original bands is equivalent to
stretching along the PC1 axis to elongate the data cluster; and (b) stretching along both the PC1 and PC2 axes expands
the elliptic data cluster in two dimensions as denoted by the dashed line ellipse
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scenes and simulated TM images, Crist and Cicone
derived the TM tasselled cap transformation as

Brightness

Greenness

Wetness

0
B@

1
CA ¼

0:3037 0:2793 0:4343 0:5585 0:5082 0:1863

� 0:2848 � 0:2435 � 0:5436 0:7243 0:0840 � 0:1800

0:1509 0:1793 0:3299 0:3406 � 0:7112 � 0:4572

0
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1
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TM7

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð7:16Þ

The transformation in (7.16) can also be expressed
as in Table 7.8. Obviously, as a positive weighted
summation of all the bands, the brightness is equiv-
alent to a PC1 image. From an image with vegeta-
tion and soils at various wetness levels as the
dominant land cover, we may locate higher rank
PCs equivalent to greenness and wetness using the
FPCS approach. However, for a multi-spectral
image of a barren region where rock and regolith
are dominant, the data variance representing vege-
tation will be very limited and not recognized as an
axis of the data ellipsoid cluster. As a result, none of
the PCs can represent greenness but using the
tasselled cap transformation, the physical properties
of greenness will be shown with a low and narrow
value range. The tasselled cap transformation
‘pinpoints’ the predefined physical property and is

therefore scene independent and not affected by
variation in land cover.

The tasselled cap transformation is widely used
for its high relevance to the crop growth cycle, soil
properties and surface moisture (both soil and veg-
etation). Since it is derived from sample TM image
data of particular areas, and although quite repre-
sentative in general terms, it is not a universal model
nor is it correct for all the regions of the Earth;
caution and critical assessment must be applied
when using it. Considering variations in imaging
conditions and environments, several variants of the
tasselled cap transformation have been proposed.
One example is the tasselled cap transformation for
Landsat-7 ETMþ at-satellite reflectance, as shown
in Table 7.9 (Huang et al., 2002). It was derived by
considering that effective atmospheric correction is
often not feasible for regional applications.

Table 7.8 Crist and Cicone’s TM tasselled cap transformation coefficients

TM band 1 2 3 4 5 7

Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863
Greenness �0.2828 �0.2435 �0.5436 0.7243 0.0840 �0.1800
Wetness 0.1509 0.1793 0.3299 0.3406 �0.7112 �0.4572

Table 7.9 Landsat-7 ETMþ at-satellite reflectance tasselled cap transformation coefficients

ETMþ band 1 2 3 4 5 7

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596
Greenness �0.3344 �0.3544 �0.4556 0.6966 �0.0242 �0.2630
Wetness 0.2626 0.2141 0.099 26 0.0656 �0.7629 �0.5388
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7.6 Statistic methods
for band selection

With the increase in spectral resolution of remotely
sensed data, more bands are available for colour
composition, but only three bands can be used. For
any particular application, it is not practical (or
necessary) to exhaust all the possible three-band
combinations for colour composition; band selec-
tion therefore becomes a quite important issue.

Band selection techniques can be divided in two
major types: statistical band selection and target-
oriented band selection techniques. Statistical tech-
niques are normally used for selecting a few bands
that may produce relatively high-quality colour
composites of optimized visualization for general
purposes. Target-oriented techniques are applied to
highlight image features of particular interest. For
instance, for vegetation studies, image bands in the
VNIR spectrum are essential, while for mineral
mapping, SWIR bands are the most effective.

For 7-band TM images, 11-band ATM images
and 14-band ASTER images, statistical techniques
are very effective tools to help users produce a few
of the most informative colour composites from a
large number of potential three-band combinations.
However, for image data with much higher spectral
resolution, such as AVIRIS (224 bands), the statis-
tical approach becomes unfeasible. The band selec-
tion, in such cases, should be based on the spectral
signatures of the particular targets. A combined
approach could also be considered; that is, locating
the relevant spectral range(s) from target spectral
signatures first, then applying statistical techniques
to select the most informative three-band groups for
colour composition.

This section introduces a statistical band selec-
tion technique compiled byCrippen (1989)which is
a more sound technique than the two widely used
techniques briefly reviewed here.

7.6.1 Review of Chavez et al.’s and
Sheffield’s methods

Generally, bands with low inter-band correlation
contain more information than highly correlated
bands and therefore tend to produce colourful col-
our composites. Based on this principle, two band

selection techniques were developed by Chavez,
Berlin and Sowers (1982) and Sheffield (1985).

Chavez et al.’s technique, the optimal index
factor (OIF), was initially designed for selecting
Landsat MSS ratios for ratio colour composites and
was applied later to more advanced multi-spectral
imagery (e.g. Landsat TM and ATM) for band
selection. The OIF is defined as

OIF ¼ SDi þ SDj þ SDk

jrijj þ jrikj þ jrjkj ð7:17Þ

where SDi is the standard deviation for band i and rij
is the correlation coefficient between band i and
band j.

The largest OIF is considered to indicate the best
band triplet for colour composition.

Sheffield’s method is more general, and for selec-
ting n bands from an m (>n) band image. The sele-
ction is based on the volume of the n-dimensional
ellipsoids, as defined byn� nprincipal sub-matrices
of the covariance matrix, where a larger volume
indicates higher information content. For colour
composition, the data distributions of band triplets
(n¼ 3) are represented by 3� 3 principal sub-
matrices in 3D ellipsoids. The band triplet having
an ellipsoid of the maximum volume is considered
to contain the maximum information. Since the
volume of the ellipsoid representing the data of a
band triplet is decided by the value of the determi-
nant of the correspondent 3D principal sub-matrix,
selection is performed by computing and ranking the
determinants of each 3� 3 principal sub-matrix of
the m-band covariance matrix.

In bothmethods, the variances of image bands are
considered as indicators of information content and
are used as the basis for band selection. In fact, the
variance of an image can be easily changed by
contrast enhancement. A linear stretch does not
change the information of an image and it is a
common case for sensor calibration using gain
factors, but it can affect band selection using these
two techniques because a linear stretch increases the
standard deviation in Chavez et al.’s method and
the volume of the ellipsoid defined by the 3� 3
principal sub-matrices of the covariance matrix in
Sheffield’s method. A good band selection tech-
nique should be unaffected by linear stretch at the
very least.
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7.6.2 Index of three-dimensionality

If we leave aside the issue of image information
content, we should realize that the main reason for a
poor colour composite, that is a less colourful and
informative one, is not the lack of information in
each band but the information redundancy caused
by high correlation between the three bands, as
illustrated in Table 7.1. An effective statistical band
selection technique should therefore aim to choose
band triplets with minimum inter-band correlation
and therefore minimum information redundancy.

We can prove that the correlation coefficients
among different bands are independent of linear
operations. Let rij represent the correlation coeffi-
cient between two image bands, Xi and Xj; then

rij ¼ sijffiffiffiffiffiffiffiffiffiffiffi
siisjj

p ð7:18Þ

wheresii andsjj are the variances of band i and j and
sij is the covariance between the two bands.

If band Xi is enhanced by a linear stretch, Yi¼
aiXi þ bi, and for band Xj, Yj¼ ajXj þ bj. Then the
variances and covariance of Yi and Yj are

a2i sii a2j sjj and aiajsij

respectively. Thus the correlation coefficient
between Yi and Yj is

Rij ¼ aiajsijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i siia2j sjj

q ¼ sijffiffiffiffiffiffiffiffiffiffiffi
siisjj

p ¼ rij: ð7:19Þ

Therefore, a band selection technique based on band
correlation coefficients is not affected by linear
contrast enhancement.

Based on this principle, Crippen (1989) proposed
to use the square root of the determinant of the three-
band correlation matrix as a measurement of the
three-dimensionality of the three-band data distri-
bution. A high three-dimensionality indicates a
spherical data distribution and so a low inter-band
correlation. The determinant of the correlation
matrix of band i, j and k is

rii rij rik

rji rjj rjk

rki rkj rkk

�������
������� ¼ 1þ 2rijrikrjk � r2ij � r2ik � r2jk:

The three-dimensionality index for band selection is
thus defined as

3D index ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rijrikrjk � r2ij � r2ik � r2jk

q
: ð7:20Þ

The value range of the 3D index is [0,1], where 1
indicates perfect three-dimensionality and 0 no
three-dimensionality at all. The higher the index
value, the better the statistical choice of a band
triplet for colour composition.

7.7 Remarks

It is interesting to note that, although PCA is based
on quite complex covariance matrix operations, in
the end a PC image is simply a linear combination of
theoriginal imagebands. Inanalysing theeigenvector
of a PC image, with the FPCS technique, we are
essentially selecting the PC through image differenc-
ing.High-rank PCs are nothingmore than compound
difference images but these are so composed as to be
independent of one another. PCA ensures orthogonal
(independent)PCsonthebasisofthedatadistribution,
while differencing allows the targeting of specific
spectral signatures of interest, although the resulting
difference images are not themselves orthogonal.
FPCS combines the merits of both of these but may
not always reveal the diagnostic spectral features.

Also noteworthy is that the average image, IHS
intensity image and PC1 image share a great deal in
common. The three images all represent the sum of
the spectral bands and all increase the image SNR.
Aband average is an equalweight summation of any
number of image bands, the IHS intensity image is
an average of three bands used for the RGB–IHS
transformation, while PC1 is aweighted summation
of all image bands involving PCA.

The concept of DS is rooted in PCA but the
PCADS is less efficient and less widely used than
the saturation DS techniques because it involves
more complicated matrix operations in the inverse
PC transformation. Although the two types of DS
technique are based on different principles, their
effects on the bands of an RGB colour composite
triplet are entirely equivalent: they both increase the
three-dimensionality of the data cluster.
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Questions

7.1 Using a diagram, explain the principle of
PCA.

7.2 Discuss the data characteristics of PC images
and their applications.

7.3 Compare and contrast the images of band
average, IHS intensity and PC1, and discuss
their relative merits.

7.4 What are the major advantages and disadvan-
tages of PC colour composition?

7.5 Describe the feature-oriented PC selection
(FPCS) method and discuss its application to
PC colour composition.

7.6 Discuss the two SPCA techniques and their
applications.

7.7 Describe and comment on the combined
approach of FPCS and SPCA for spectral
enhancement.

7.8 What is a decorrelation stretch (DS)? De-
scribe the major steps of PCADS.

7.9 Compare the three DS techniques, PCADS,

IHSDS and DDS, in principle, results and
processing efficiency.

7.10 What do PCA and the physical-property-
orientated coordinate transformation have in
common? How are they different in method-
ology and applications?

7.11 In what sense are the PCA and the tasselled
cap transformation similar?What is the major
difference between the two techniques? Com-
ment on the merits and drawbacks of the two
methods for Earth observation.

7.12 Describe the two main approaches for band
selection.Why is band selection necessary for
visualization of multi-spectral images?

7.13 Describe the principles behind the index
of three-dimensionality. What is the major
consideration in the design of this tech-
nique?

7.14 From the correlation matrix in Table 7.1,
calculate the index of three-dimensionality
using formula (7.20) for band triplets 321,
432, 531 and 541.
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8
Image Classification

Image classification belongs to a very active field in
computing research, that of pattern recognition.
Image pixels can be classified either by their multi-
variable statistical properties, such as the case of
multi-spectral classification (clustering), or by
segmentation based on both statistics and spatial
relationships with neighbouring pixels. In this
chapter, we will look at multi-variable statistical
classification techniques for image data.

8.1 Approaches of statistical
classification

Generally, statistical classification can be catalo-
gued into two major branches: unsupervised and
supervised classifications.

8.1.1 Unsupervised classification

This is entirely based on the statistics of the image
data distribution, and is often called clustering.
The process is automatically optimized according
to cluster statistics without the use of any knowl-
edge-based control (i.e. ground truth). The method
is therefore objective and entirely data driven. It is
particularly suited to images of targets or areas
where there is no ground truth knowledge or where
such information is not available, such as in the

case of planetary images. Even for a well-mapped
area, unsupervised classification may reveal some
spectral features which were not apparent before-
hand. The result of an unsupervised classification
is an image of statistical clusters, where the the-
matic contents of the clusters are not known.
Ultimately, such a classification image still needs
interpretation based on some knowledge of ground
truth.

8.1.2 Supervised classification

This is based on the statistics of training areas
representing different ground objects selected
subjectively byusers on the basis of their ownknowl-
edgeorexperience.Theclassificationiscontrolledby
users’ knowledge but, on the other hand, is con-
strained and may even be biased by their subjective
view. The classification can therefore be misguided
by inappropriate or inaccurate training area informa-
tion and/or incomplete user knowledge.

Realizing the limitations of both major classifi-
cation methods, a hybrid classification approach
has been introduced. In the hybrid classification of
a multi-spectral image, firstly an unsupervised
classification is performed, then the result is inter-
preted using ground truth knowledge and, finally,
the original image is reclassified using a supervised
classification with the aid of the statistics of the
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unsupervised classification as training knowledge.
This method utilizes unsupervised classification in
combination with ground truth knowledge as a
comprehensive training procedure and therefore
provides more objective and reliable results.

8.1.3 Classification processing and
implementation

A classification may be completed in one step, as a
single pass classification, or in an iterative optimi-
zation procedure referred to as an iterative classifi-
cation. The single pass method is the normal case
for supervised classification while the iterative
classification represents the typical approach to
unsupervised classification (clustering). The itera-
tive method can also be incorporated into a super-
vised classification algorithm.

Most image processing software packages per-
form image classification in the image domain by
image scanning classification. This approach can
classify very large image datasets with many spec-
tral bands and very high quantization levels, with
very low demands on computing resources (e.g.
RAM) but it cannot accommodate sophisticated
classifiers (decision rules). Image classification can
also be performed in feature space by feature space
partition. In this case, sophisticated classifiers in-
corporating data distribution statistics can be ap-
plied but the approach demands a great deal of
computer memory to cope with the high data di-
mensionality and quantization. This problem is
being overcome by increasingly powerful comput-
ing hardware and dynamic memory management in
programming.

8.1.4 Summary of classification approaches

These are as follows:

. Unsupervised classification

. Supervised classification

. Hybrid classification

. Single pass classification

. Iterative classification

. Image scanning classification

. Feature space partition.

8.2 Unsupervised classification
(iterative clustering)

8.2.1 Iterative clustering algorithms

For convenience of description, let X be a n-
dimensional feature space of n variables (x1,
x2, . . . , xn), Yi be an object of an object set Y (an
image) defined by measurements of the n variables
(e.g. DNs of n spectral bands), Yi¼ (yi1, yi2, . . . , yin),
i¼ 1, 2, . . . , N. N is the total number of objects in Y
or the total number of pixels in an image. As shown
in Figure 8.1, in the feature space X, the object Yi is
represented by an observation vector, that is a data
point Xj2X at the coordinates (xj1, xj2, . . . , xjn),
j¼ 1, 2, . . . ,M.M is the total number of data points
representing N objects. If X is a Euclidean space,
then xjh� yih, h¼ 1, 2, . . . , n. Obviously, a data
point Xj in the feature space X can be shared by
more than one image pixel Yi and therefore M�N.

The goal of the clustering process is to identify the
objects of set Y inm classes. This is equivalent to the
partitionof the relevant data points in feature spaceX
into m spatial clusters, v1, v2, . . . , vm. Generally,
thereare twoprincipal iterative clusteringalgorithms
labelledaandb (DidayandSimon,1976),asfollows:

Algorithm a

1. Initialization
Let m elements Yq2Y, chosen at random or
by a selection scheme, be the ‘representation’

Figure 8.1 A 3D illustration of the relationship between
a feature space point Xj and a multi-spectral image pixel
Yi¼ (yi1, yi2, yi3)
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of m clusters denoted as v1, v2, . . . , vk, . . . ,
vm.

2. Clustering
For all i, assign any elementYi (Yi2 Y) to a cluster
vk, if the dissimilarity measurement d(Yi, vk) is
minimal.

3. Update statistical representation
For all k, newstatistics of clustervk are computed
as the renewed representation of the cluster vk.

4. Stability
If novk has changed above the given criteria then
stop, else go to 2.

Algorithm b

1. As in step 1 of algorithm a.
2. One element Yi (Yi2 Y) is assigned to cluster vk,

if d(Yi, vk) is minimal.
3. A new representation of vk is computed from all

the elements of cluster vk, including the last
element.

4. If all elements Yi (Yi2Y) have been assigned to a
cluster then stop, else go to step 2.

Algorithm a may not necessarily converge if the
criterion for terminating the iteration is too tight.
Algorithm b ends when the last pixel is reached.
Algorithm a is more commonly used for image
classification because of its self-optimizationmech-
anism and processing efficiency. Cluster splitting
and merging functions can be added to algorithm a
after step 4, which allows the algorithm to operate
more closely with the true data distribution and to
reach more optimized convergence. During the
progress of the clustering iteration, the initial cluster
centres move towards the true data cluster centres
via the updating of their statistical representations at
the end of each iteration. The only user control on
clustering is the initial parameter setting, such as
number and position of the starting centres of
clusters, iteration times or termination criteria,
maximum and minimum number and size of clus-
ters, and so on. The initial settingwill affect the final
result. In this sense, the clustering iteration mecha-
nism can only ensure local optimization, the opti-
mal partition of clusters for the given initial param-
eter setting, but not the global optimization, because
the initial parameter setting cannot be optimal for
the best possible clustering result.

For most image processing packages, image
clustering using either of the two algorithms is
executed on an object set Y, that is the image. The
processing is on a pixel-by-pixel basis by scanning
the image but, with advances in computing power,
the very demanding feature space partition cluster-
ing in the feature space X becomes feasible.

One of the most popular clustering algorithms for
image classification, the ISODATA algorithm (Ball,
1965; Ball and Hall, 1967), is a particular case of
algorithm a in which the dissimilarity measure
d(Yi, vk) in step 2 is the square Euclidean distance.
The assumption underlying this simple and efficient
technique is that all the clusters have equal variance
and population. This assumption is generally untrue
in image classification, and as a result classification
accuracy may be low. To improve ISODATA, more
sophisticatedmeasures of dissimilarity, such asmax-
imumlikelihoodestimationandpopulationweighted
measurements, have been introduced. For all these
different decision rules,within the ISODATA frame,
the processing is performed by image scanning.

8.2.2 Feature space iterative clustering

As mentioned earlier, image classification can be
performed by image scanning as well as by feature
space partition. Most multi-variable statistical clas-
sification algorithms can be realized by either ap-
proach but, for more advanced decision rules, such
as optimal multiple point reassignment (OMPR),
which will be introduced later, feature space parti-
tion is the only feasible method because all pixels
sharing the sameDNvalues in each image bandmust
be considered simultaneously. Here we introduce a
three-dimensional feature space iterative clustering
method, the 3D-FSIC method, an algorithm which
can be easily extended to further dimensions.

Three-dimensional feature space iterative
clustering (3D-FSIC)

Step 1. Create a 3D Scattergram of the Input Image
Read the input image, Y, pixel by pixel and record
the pixel frequencies in a 3D scattergram, that is a
3D array (Figure 8.2a)

Gðd1� d2� d3Þ
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where d1, d2 and d3 are the array sizes in the three
dimensions or the maximumDN values of the three
bands of the image Y.

The value of any element gj in G indicates how
many pixels share the point Xj at the coordinates
(xj1, xj2, xj3) in the 3D feature spaceX, or the number
of pixels with the same DN values as pixel Yi in the
image Y, where yih� xjh, h¼ 1, 2, 3.

Step 2. Initialization Select m points in the 3D
feature space X as the ‘seeds’ of m clusters and call
themvk, k¼ 1, 2, . . . ,m. The choice could be made
at random or via an automatic seed selection
technique.

Step 3. Feature space clustering For all j, assign
any pointXj (Xj2X, j¼ 1, 2, . . . ,N) to clustervk if
the dissimilarity d(Xj, vk) is minimal. Thus all the
pixels sharing the point Xj are assigned to cluster
vk simultaneously. The size of cluster vk, Nk,
increases by the value gj while, if it is a reassign-
ment, the size of the cluster to which Xj was
formerly assigned decreases by the same value.
The cluster sequential number k of point Xj is
recorded by a 3D feature space partition array P
(d1� d2� d3) in the element pj at coordinates (xj1,
xj2, xj3) (Figure 8.2b).

Step 4. Update the statistical representation of
each cluster For all k (k¼ 1, 2, . . . , m), statistical
parameters, such as mean vector mk, covariance
matrix

P
k and so on are calculated. These para-

meters comprise the new representation of the
cluster vk.

Step 5. Stability For all k (k¼ 1, 2, . . . , m), if the
maximum spatial migration of the mean vector

mk (the kernel of the cluster) is less than a user-
controlled criterion, go to step 7, else go to step 6.

Step 6. Cluster splitting and merging Split the
overlarge and elongate clusters and merge clusters
which are too small and/or too close to each other,
according to user-controlled criteria; then update
the statistical representations of the new clusters.
Go to step 3.

Step 7. Transfer the Clustering Result from Feature
Space to an Image Read the input image Y, pixel
by pixel. For all i, assign a pixel Yi (Yi2 Y) to cluster
vk if its relevant data point Xj in feature space X is
assigned to this cluster, according to the record in
the feature space partition array P, that is

Yi !vk if Pj ¼ k

where Pj is at coordinates (xj1, xj2, xj3) in P and
yih� xjh, h¼ 1, 2, 3.
Then assign the class number to the correspond-

ing pixel in the output classification image Yclass.

8.2.3 Seed selection

The initial kernels (seeds) for unsupervised
classification can be made randomly, evenly or
by particular methods. Here we introduce an
automatic seed selection technique (ASST) for
3D-FSIC.

In the 3D scattergram of the three images for
classification, data will exhibit peaks (the points of
high frequency) at the locations of spectral clusters.
It is thus sensible to use these points as the initial
kernels of clusters to start iterative clustering. Such
a peak point has two properties:

. Higher frequency than all its neighbouring points
in the feature space.

. Relatively high frequency in the 3D scattergram.

These two properties are to be used to locate peak
points. It is important to bear in mind that the multi-
spectral image data and scattergram are discrete and
that the DN value increment of an image may
not necessarily be unity, especially after contrast
enhancement. For instance, when an image of 7 bit

xj3

xj1

gj

X1

X2

X3

xj2

(a) 

xj3

xj1

pj

X1

X2

X3

xj2

(b)

Figure 8.2 (a) A 3D array G of a scattergram; and (b) a
3D array P of a feature space partition
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DN range [0, 127] is linearly stretched to 8 bit DN
range [0, 255], the increment of DN values becomes
2 instead of 1. In this case, any non-zero frequency
DN level in the original image will have two
adjacent zero-frequency DN levels in the stretched
image (Figure 8.3), appearing as a pseudo peak
caused by data discontinuity. With these considera-
tions in mind, ASST is composed of the following
operations:

1. Locate and rank the first N points of highest
frequency from the 3D scattergram to form a
sequential set Xc. N can be decided by setting a
criterion frequency on the basis of experience
and experimentation. For an 8 bit full-scene TM
image, 1024 is suggested. This operation will
prevent the selection of isolated low-frequency
points (often representing noise) as seeds and
thus satisfy the second property.

2. The first element in the setXcmust be nominated
as a seed because it cannot be surrounded by any
elements of a higher frequency. Then, for the
second element ofXc, check if the first element is
in its given neighbourhood range (the neighbour-
hood is used to avoid pseudo peaks in the image
withDN increment greater than 1) and, if not, the
second element is also selected as a seed. In
general, for any element Xj in Xc, check the
coordinates of those elements rankedwith higher
frequency; Xj is selected as a seed if none of the
higher frequency elements are within its neigh-
bourhood. This operation makes the seed selec-
tion satisfy the first property.

8.2.4 Cluster splitting along PC1

In unsupervised classification (cluster partition)
very large clusters may be generated. Such large
clusters may contain several classes of ground
objects. A function for cluster splitting is there-
fore necessary to achieve optimal convergence. In
ISODATA, an overlarge and elongated cluster v
is split according to the variable with greatest
standard deviation. The objects (image pixels) in
cluster v are reassigned to either of the two new
clusters, v1 and v2, depending on whether their
splitting variable values are above or below the
mean of the splitting variable. As shown by the
2D case in Figure 8.4, splitting in this way may
cause incorrect assignments of those objects in
the shaded area of the data ellipse. They are
assigned to a new cluster which is farther away
from them rather than closer. This error can be
avoided if the cluster v is split along its first
principal component (PC1). Since PC1 can be
found without performing a principal component
transformation, not too many calculations are
involved. The technique of cluster splitting based
on PC1 (Liu and Haigh, 1994) includes two steps:
finding PC1 followed by cluster splitting based
on PC1.

8.2.4.1 Find the first principal
component PC1

The covariance matrix S of the cluster v is a non-
negative definite matrix. Thus the first eigenvalue
and eigenvector of S, l1 and a¼ (a1, a2, . . . , an)

T,

Band 1

Band 2

PC1

pc1

1

Figure 8.4 A 2D example of cluster splitting based on
band 1 (the variable with maximum standard deviation)
and PC1. The shaded areas indicate the misclassification
resulting from the cluster splitting based on band 1

(b) (a) 

x

h(x)

x

h(x)

Figure 8.3 Illustration of pseudo peaks in an image
histogram (a) caused by linear stretch (b)
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can be found by the iteration

SaðsÞ ¼ lðsþ 1Þ
1 aðsþ 1Þ

að0Þ ¼ I
ð8:1Þ

where s denotes the number of iterations and I is an
identity vector.

As an eigenvector, a is orthogonal; thus for each
iteration s, we have

ðaðsÞÞTaðsÞ ¼ 1: ð8:2Þ
Then

ðSaðsÞÞtSaðsÞ ¼ lðsþ 1Þ
1 ðaðsþ 1ÞÞtlðsþ 1Þ

1 aðsþ 1Þ

¼ ðlðsþ 1Þ
1 Þ2:

Thus,

lðsþ 1Þ
1 ¼ ½ðSaðsÞÞTSaðsÞ�1=2

aðsþ 1Þ ¼ SaðsÞ

lðsþ 1Þ :
ð8:3Þ

After 5–6 iterations convergence with an accu-
racy higher than 10�5 can be achieved and the
first eigenvalue l1 and eigenvector a are found.
Consequently, the first principal component of
cluster v in the n-dimensional feature space X is
derived as

PC1 ¼ ðaÞTX ¼
Xn
h¼1

ahxh: ð8:4Þ

8.2.4.2 Cluster splitting
According to (8.4), the PC1 coordinate of the mean
vector m¼ (m1, m2, . . . , mn)T of cluster v is

mpc1 ¼ ðaÞTm ¼
Xn
h¼1

ahmh: ð8:5Þ

For every data point Xj2v, we calculate its PC1
coordinate:

xj;pc1 ¼ ðaÞTXj ¼
Xn
h¼1

ahxjh: ð8:6Þ

We assign Xj to v1 if xj,pc1 >mpc1, otherwise we
assign Xj to v2.

Cluster splitting can also be performed on the
objects (image pixels) instead of data points by
replacing Xj by Yi (i¼ 1, 2, . . . , N) in formula (8.6).

After cluster splitting, the statistics of the two new
clusters are calculated as the representations for the
next clustering iteration.

8.3 Supervised classification

8.3.1 Generic algorithm of supervised
classification

A supervised classification comprises three major
steps, as follows:

Step 1. Training Training areas representing dif-
ferent ground objects aremanually and interactively
defined on the image display. Statistics of the
training areas are calculated to represent the rele-
vant classes vk (k¼ 1, 2, . . . , m).

Step 2. Classification For all i, assign any element
Yi (Yi2 Y) to a class vk, if the dissimilarity measure-
ment d(Yi, vk) is minimal.

Step 3. Class statistics Calculate the statistics of
all resultant classes.

Iteration and class splitting/merging functions
can also be accommodated into a supervised clas-
sification algorithm to provide an automated opti-
mization mechanism.

8.3.2 Spectral angle mapping classification

A pixel in an n-band multi-spectral image can be
considered as a vector in the n-dimensional feature
space X. The magnitude (length) of the vector is
decided by the pixel DNs of all the bands while the
orientation of the vector is determined by the shape
of the spectral profile of this pixel. If two pixels have
similar spectral properties but are under different
solar illumination because of topography, the vec-
tors representing the two pixels will have different
lengths but very similar orientation. Therefore the
classification of image pixels based on the spectral
angles between them will be independent of topog-
raphy (illumination) as well as any unknown linear
translation factors (e.g. gain and offset). The spec-
tral angle mapping (SAM) technique, proposed by
Kruse, Lefkoff and Dietz (1993), is a supervised
classification based on the angles between image
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pixel spectra and training data spectra or library
spectra. The algorithm determines the similarity
between two spectra by calculating the spectral
angle between them as shown in a 2D diagram
(Figure 8.5). According to vector algebra, the angle
between two vectors r and t is defined as

a ¼ arccos
t � r
tj j � rj j

� �
ð8:7Þ

or

a ¼ arccos

Pm
i¼1 tiriPm

i¼1 t
2
i

� �1=2 Pm
i¼1 r

2
i

� �1=2
 !

: ð8:8Þ

where m is the number of spectral bands.
The value range of a is 0�p.

In general, for N reference spectral vectors rk
(k¼ 1, 2, . . . , N), either from an existing spectral
library or from training areas, the spectral vector t of
an imagepixel is identified as rk if the anglea between
them is minimal and is less than a given criterion.

The SAM classification is widely used in hyper-
spectral image data classification for mineral iden-
tification and mapping. It can also be used in
broadband multi-spectral image classification.
Within the framework of SAM, different dissimi-
larity functions can be implemented to assess the
spectral angle, a.

8.4 Decision rules: dissimilarity
functions

Dissimilarity functions, based on image statistics,
formulate decision rules at the core of both supervised
and unsupervised classification algorithms, and these
theoretically decide the accuracy of a classification
algorithm. Herewe introduce several commonly used
decision rules of increasing complexity.

8.4.1 Box classifier

This is also called a parallel classifier. It is used for
single pass supervised classification. In principle, it is
simply multi-dimensional thresholding (Figure 8.6a).

1

2

3

4

5

Band i

Band j

P(i,j)

1

2

3
4

5

Band i

Band j

Min( 3)i Max( 3)i

Min( 3)j

Max( 3)j

(a) (b)

Figure 8.6 Illustrations of 2D feature space partition of the box classifier and distance-based classifications: (a) a box
classifier is actually a simple multi-dimensional threshold – it cannot classify image pixels that fall in the value ranges
of multiple classes as shown in the shaded areas; (b) the circles are the class centres and the ellipses represent the size
of each class. The minimum Euclidean distance classification will assign the pixel P(i, j) to the class centre v4 whereas
themaximum likelihoodminimum distance classification will bemore likely to assign the pixel P(i, j) to the class centre
v3 because this class is larger

Band j

Band i

t
r

Figure 8.5 A 2D illustration of two spectral vectors and
the spectral angle (a) between them
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For all i, assign an element Yi (Yi2 Y) to cluster
vk if

minðvkÞ � Yi � maxðvkÞ: ð8:9Þ

The ‘boxes’ representing the scopes of different
classes may partially overlap one another, as in the
shaded areas shown in Figure 8.6a. The pixels that
fall within the overlap areas are treated as unclassi-
fied. This is a very crude but fast classifier.

8.4.2 Euclidean distance: simplified
maximum likelihood

The Euclidean distance is a special case of maxi-
mum likelihood which assumes equal standard
deviation and population for all clusters. It is de-
fined as follows.

For all i, assign an element Yi (Yi2 Y) to cluster
vk if

dðYi;vkÞ ¼ ðYi�mkÞTðYi�mkÞ ¼ minfdðYi;vrÞg
ð8:10Þ

for r¼ 1, 2, . . . , m and where mk is the mean vector
of cluster vk.

The Euclidean distance lies at the core of the
ISODATA minimum distance classification.

8.4.3 Maximum likelihood

The maximum likelihood decision rule is based on
Bayes’ theorem and assumes a normal distribution
for all clusters. In this decision rule, the feature space
distance between an image pixel Yi and cluster vk is
weighted by the covariance matrix Sk of vk with an
offset relating to the ratio ofNk, the number of pixels
invk, toN, the total number of pixels of the image Y.

For all i, assign an element Yi (Yi2 Y) to clustervk

if

dðYi;vkÞ ¼ ln Skj j þ ðYi�mkÞTS�1
k ðYi�mkÞ

�ln
Nk

N
¼ minfdðYi;vrÞg

ð8:11Þ
for r¼ 1, 2, . . . , m.

As shown in Figure 8.6b, theminimumEuclidean
distance classification will assign the pixel P(i, j) to
the class centre v4, whereas the maximum likeli-
hood minimum distance classification will be more
likely to assign the pixel P(i, j) to the class centrev3

because this class is larger.

8.4.4 �Optimal multiple point reassignment

An advantage of 3D-FSIC is that the optimal
multiple point reassignment (OMPR) rule can be
implemented if we let d(Xj, vk) be an OMPR
dissimilarity measurement at step 3 of 3D-FSIC.
The OMPR (Kittler and Pairman, 1988) was
developed based on the optimal point assignment
rule (Macqueen, 1967). By using OMPR, the clus-
ter sizes and the number of pixels sharing the same
data point in feature space (point frequency) are
taken into account when a reassignment of these
pixels is made. Thus the accuracy of the clustering
partition can be reasonably improved.

Suppose a data point Xj currently allocated to
cluster vl is shared by H pixels; then the OMPR
based on the square Euclidean distance (Euclidean
OMPR) for all these pixels from clustervl to cluster
vk, shared by Nk pixels, will be achieved if vk

satisfies

Nk

Nk þH
dðXj;mkÞ ¼ min

r„l

Nr

Nr þH
dðXj;mrÞ

<
Nl

Nl�H
dðXj;mlÞ

ð8:12Þ

where Nr is the number of pixels in any cluster vr

and Nl that in cluster vl.
If the clusters are assumed to have a normal

distribution (Gaussian model), the Gaussian OMPR
is formed as follows.

For all j, assign a data point Xj in cluster vl to
cluster vk if

dðXj;vkÞ ¼ min
r„l

dðXj;vrÞ

< lnjSlj�Nl �H

H
ln 1� H

Nl �H
DðXj;vlÞ

� �

�2 ln
Nl

N
�ðDþ 2ÞNl �H

H
ln

Nl

Nl �H

ð8:13Þ
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where

dðXj;vrÞ¼ lnjSrjþNrþH

H
ln 1þ H

NrþH
DðXj;vrÞ

� �

�2ln
Nr

N
þðDþ2ÞNrþH

H
ln

Nr

NrþH

ð8:14Þ
and

DðXj;vrÞ¼ðXj�mrÞTS�1
r ðXj�mrÞ

with D the dimensionally of feature space X.
In the OMPR method, data point inertia is con-

sidered. A data point shared by more pixels
(‘heavier’) is more difficult to move from one
cluster to another than a ‘lighter’ point.

8.5 Post-classification processing:
smoothing and accuracy
assessment

8.5.1 Class smoothing process

A classification image appears to be a digital image
in which the DNs are the class numbers, but we
cannot perform numerical operations on class num-
bers. For instance, the average of class 1 and class 2
cannot be class 1.5! Indeed, the class numbers in a

classification image do not have any sequential
relationship; they are nominal values and can be
treated as symbols such as A, B and C (see also
Section 12.3). A classification image is actually an
image of symbols, not digital numbers; it is there-
fore not a digital image in the generally accepted
sense. As such we cannot apply any numerical-
operation-based image processing to classification
images.

Aclassification imageoftencontainsnoisecaused
by the isolatedpixels of someclasses,within another
dominant class, which can form sizeable patches
(Figure 8.7a). It is reasonable to presume that these
isolated pixels are more likely to belong to this
dominant class rather than to the classes that they
are initially assigned to; these probably arise from
classification errors. An appropriate smoothing pro-
cess applied to a classification image will not only
‘clean up’ the image, making it visually less noisy,
but also improve the accuracy of classification.

Among the low-pass filters that we have de-
scribed so far, the only filter you can use to smooth
a classification image is the mode (majority) filter.
The reason for this is simple, since the mode filter
smoothes an image without any numerical opera-
tions. For instance, if a pixel of class 5 is surrounded
by pixels of class 2, the mode filter will reassign this
pixel to class 2 according to the majority class in the

Figure 8.7 Smoothing classification images: (a) ISODATA unsupervised classification with 24 classes; and (b) the
classification image smoothed using a mode filter with a majority of 5 in a 3� 3 filtering kernel. A closer look at these
images reveals the difference between them: image (b) is smoother than image (a)
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filtering kernel. Figure 8.7b illustrates the effect of
mode filtering applied to an unsupervised classifi-
cation image in Figure 8.7a.

8.5.2 Classification accuracy assessment

Ultimately there is no satisfactory method to assess
the absolute accuracy of image classification for
remote sensing Earth observation applications (see
also Section 17.5.1). The paradox is that we cannot
conduct such an assessment without knowing 100%
of ground truth on one hand, while, on the other
hand, if we do have complete knowledge of ground
truth, what is the point of the classification? Even an
assessment or an estimate of relative accuracy of
classification does, however, provide valuable
knowledge for us to accept or reject a classification
result at a certain confidence level. There are two
generally accepted approaches to generate ground
truth:

1. Use field-collected data of typical classes as
samples of ground truth. For rapidly and tempo-
rally changing land cover classes, such as crops,
field data should be collected simultaneously
with image acquisition. For temporally stable
targets, such as rocks and soils, published maps
as well as field data can be used. The classifica-
tion accuracy of the sample areas with known
classes gives an estimate of total classification
accuracy. This seemingly straightforward ap-
proach is often impractical in reality because it
is often constrained by errors in the recording of

field observations, limited field accessibility and
temporal irrelevance.

2. Another approach relies on image training. This
uses typical spectral signatures and limited field
experience, where a user can manually specify
training areas of various classes using a multi-
spectral image. The pixels in these training areas
are separated into two sets: one is used to generate
class statistics for supervised classification and
the other for subsequent classification accuracy
assessment. For a given training area, we could
take a selection of pixels sampled from a 2� 2
grid as the training set while the remaining pixels
are used for the verification set (ground truth
reference data), as shown inFigure 8.8.The pixels
in the verification set are assumed to belong to the
same class as their corresponding training set. In
another way, we can also select several training
areas for the same class and use some of them for
training and the rest for verification.

In practice the above two approaches are often
used in combination.

Suppose that we have some kind of ground truth
reference data; then a widely used method to de-
scribe the relative accuracy of classification is the
confusion matrix:

C11 C12 � � � Cim

C21 C22 � � � C2m

..

. ..
. . .

. ..
.

Cm1 Cm2 � � � Cmm

0
BBBBB@

1
CCCCCA: ð8:15Þ

Figure 8.8 A resampling scheme for classification accuracy assessment. An image (a) is resampled to formulate two
images (b) and (c); one is used as the training dataset while the other is used as the verification set
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Here, each of the elements, Cii, in the major
diagonal represents the number of pixels that are
correctly classified for class i. Any element off the
major diagonal, Cij, represents the number of pixels
that should be in class i but which are incorrectly
classified as class j. Obviously, if all the image
pixels are correctly classified, we should then have
a diagonal confusion matrix where all non-diagonal
elements become zero. The sum of all the elements
in the confusion matrix is the total number of pixels
in a classification image, N:

N ¼
Xm
i¼1

Xm
j¼1

Cij:

The ratio between the summation of the major
diagonal elements and the total number of pixels
represents the percentage of the correct classifica-
tion or overall accuracy:

Ratiocorrectð%Þ ¼ 1

N

Xm
i¼1

Cii: ð8:16Þ

The sum of any row i of the confusion matrix
gives the total number of pixels that, according to
the ground truth reference, should be in class i,
Nri:

Nri ¼
Xm
j¼1

Cij:

Then the ratio Cii/Nri is the percentage of correct
classification of class i, according to the ground
truth references and is often called user’s
accuracy.

The sum of any column j of the confusion matrix
gives the total number of pixels that have been
classified as class j, Ncj:

Ncj ¼
Xm
i¼1

Cij:

Then the ratio Cii/Nci is the percentage of correct
classification of class j, based on the classification
result, and is often called producer’s accuracy.

Apart from the above accuracy measurements
which are based on simple ratios, another common-
ly used statisticalmeasure of classification accuracy
and quality is the kappa coefficient (k) that com-
bines the above two class accuracy estimations,
based on the rows and columns of the confusion

matrix, to produce an estimate of total classification
accuracy, as follows:

k ¼
N
Pm
i¼1

Cii �
Pm
i¼1

Nri �Nci

N2 �Pm
i¼1

Nri �Nci
: ð8:17Þ

In the case of 100% agreement between the classi-
fication and the reference data, the confusionmatrix
is diagonal, that is

Pm
i¼1 Cii ¼ N. Thus,

k ¼
N2 �Pm

i¼1
Nri �Nci

N2 � Pm
i¼1

Nri �Nci
¼ 1;

while if there is no agreement at all, then all the
elements on the diagonal of the confusionmatrix are
zero, that is

Pm
i¼1 Cii ¼ 0. In this case

k ¼
�Pm

i¼1
Nri �Nci

N2 � Pm
i¼1

Nri �Nci
< 0:

In summary, the maximum value of the kappa
coefficient k is 1, indicating perfect agreement
between the classification and the reference data,
while for no agreement k becomes negative. The
minimum value of k is case dependent, but as long
as k� 0, it indicates zero agreement between the
classification and the reference data.

As illustrated in Table 8.1, the numbers in bold
italics form the confusionmatrix.Nri andCii/Nri are
listed in the two right-hand columns, while Ncj and
Cjj/Ncj appear in the bottom two rows. The bold
number in the bottom right corner is the total
percentage of correct classification. The kappa
coefficient can then be calculated fromTable 8.1 by

k ¼ 403� 308� 33 023

162 409� 33 023
¼ 911 01

129 386
¼ 0:704:

Despite the fact that the classification accuracy
derivedfromtheconfusionmatrixisverymuchaself-
assessment and is by no means the true accuracy of
classification, it does provide a useful measure of
classification accuracy. The information in a confu-
sion matrix is highly dependent on the quality of the
training areas and field data. Well- selected training
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areas can improve both the classification accuracy
and the credibility of accuracy assessment, whereas
poorly selected training areas will yield low classifi-
cation accuracy and unreliable accuracy assessment.
Strictly speaking, thismethod only gives an estimate
of the classification accuracy of the whole image.

8.6 Summary

In this chapter, we have introduced the most com-
monly used image classification approaches and
algorithms. These methods are essentially multi-
variable statistical classifications that achieve data
partition in the multi-dimensional feature space of
multi-layer image data, such as a multi-spectral
remotely sensed image.

The iterative clustering method of unsupervised
classification enables self-optimization of a local
optimal representative of the natural clusters in the
data. How well the clustering converges to a local
optimal depends on the dissimilarity function and
clustering mechanism employed, while the quality
of the local optimal is mainly affected by the initial
cluster centres (the seeds) from where the iteration
starts. Thus a seed selection technique, locating the
peaks of data distribution, is introduced. A method
for cluster splitting, based on PC1, is also proposed
to improve the clustering mechanism.

Though affected by the same factors, the accu-
racy of a supervised classification is largely con-
trolled by the user’s knowledge. High-quality user
knowledge could lead to correct classification of
known targets while poor user knowledge may
mislead rather than help.

There are manymethods of accuracy assessment,
such as the well-known confusion matrix, but it is
important to know the limitations of such methods
that merely give a relative assessment rather than
the true accuracy of classification.

Finally, we must recognize that a classification
image is not a true digital image but a symbol image
presented in numbers. We could apply numerical
operations to a classification but the results do not
reallymake any sense.We can, however, use logical
operations to process classification images, such as
smoothing a classification image using a mode
(majority) filter because it does not involve any
numerical operations.

Questions

8.1 What is multi-variable statistical classifica-
tion? Describe the major approaches for im-
age classification.

8.2 What are the advantages and disadvantages of
unsupervised classification? Describe the al-
gorithm a for iterative clustering.

8.3 Explain, using a diagram, the self-optimiza-
tion mechanism of iterative clustering.

8.4 Describe the main steps of the 3D-FSIC algo-
rithm with the aid of diagrams. What are the
main advantages and limitations of feature
space iterative clustering?

8.5 What are the two properties for the design of
the automatic seed selection technique?

8.6 What is the problem with cluster splitting
along the axis of the variable with the

Table 8.1 An example confusion matrix

Class Class 1 Class 2 Class 3 Class 4 Class 5 Row sum Nri Cii/Nri (%)
Reference

Reference 1 56 9 5 2 8 80 70.0
Reference 2 10 70 7 3 5 95 73.7
Reference 3 0 3 57 10 6 76 75.0
Reference 4 0 6 0 79 4 89 88.8
Reference 5 8 4 3 2 46 63 73.0
Column sum Ncj 74 92 72 96 69 403
Cjj/Ncj (%) 75.6 76.1 79.2 82.3 66.7 76.4
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maximum standard deviation? What is a
better approach?

8.7 Describe the general steps of supervised
classification.

8.8 Explain the principle of spectral angle classi-
fication and its merits.

8.9 What is a confusion matrix? Based on the
confusion matrix, give definitions for overall
accuracy, user’s accuracy and producer’s
accuracy.

8.10 Comment on the issue of accuracy assessment
for image classification.
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9
Image Geometric Operations

Geometric operations include the shift, rotation and
warping of images to a given shape or framework.
In remote sensing applications, geometric opera-
tions are mainly used for the co-registration of
images of the same scene acquired by different
sensor systems or at different times or fromdifferent
positions, and for rectifying an image to fit a
particular coordinate system (geocoding). Image
mosaic is a geometric operation that was commonly
used in the early days of remote sensing image
processing when computer power was inadequate
for the massive demands of the geocoding process,
but this is no longer the case. Once a set of adjacent
images is accurately rectified to a map projection
system, such as a UTM coordinate system
(see Chapter 13 in Part Two for details) the images,
though separate, are effectively in a mosaic.

9.1 Image geometric deformation

An image taken from any sensor system is a distor-
tion of the real scene. There are many sources of
error since, for instance, anyoptical sensor system is
a distorted filtered imaging system. Such source
errors in sensor systems are usually corrected in the
sensor calibrations carried out by themanufacturers
during hardware maintenance; they are beyond
the scope of this chapter. Our main concerns lie on
the user side of remote sensing applications, in the

geometric distortions introduced during the imag-
ing process, when a satellite or aircraft acquires
images of the land surface.

9.1.1 Platform flight coordinates, sensor
status and imaging geometry

As shown in Figure 9.1, image geometry is funda-
mentally controlled by three sets of parameters:

. The platform flight coordinate system (x, y, z),
where x is in the flight direction, z is orthogonal to
x in the plane through the x axis and perpendicular
to the Earth’s surface, and y is orthogonal to both x
and z.

. The sensor 3D status is decided by orientation
angles v, f, k in relation to the platform flight
coordinate system (x, y, z).

. The coordinates (X,Y,Z) of the imagingpositionon
the ground usually conform to a standard coordi-
natesystem(definedbymapprojectionanddatum).

The preferred imaging geometry for the optical
sensors of most Earth observation satellites is that
the satellite travels horizontally and parallel to the
Earth’s curved surface with (x, y, z) matching
(X, Y, Z) and sensor orientation angles (v, f, k)
all being equal to 0. This is the configuration of
nadir (vertical) imaging, which introduces minimal
geometric distortion.

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
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For an optical imaging system, the focal length f
of the lenses is another important parameter that
decides the characteristics of the central projection
distortion. For the same imaging area (field of

view), a shorter focal length will result in greater
topographic distortion (Figure 9.2). Nadir view
imaging is achieved when the principal of the
optical system is vertical to the plane of the scene
to be imaged. Otherwise, an oblique view imaging
configuration is formed, depending on the sensor
status; this can be side-looking, forward-looking,
backward-looking or oblique-looking in any direc-
tion. The geometric distortion for a nadir view
image is central and symmetrical, increasing from
the centre of the image to its edge, whereas that for
an obliqueview image increases from the near range
to the far range of the image, in which all topo-
graphic features appear to fall away from the sensor
look direction (Figure 9.3). For satellite-borne ver-
tical imaging using a scanner system, the usual
sensor status is that the orientation of the sensor
principal is vertical to the land surface and that the
scanning direction is perpendicular to the flight
direction. As illustrated in Figure 9.4, when the
scanning direction is skewed to the flight direction
(v 6¼ 0), the swath of the image scan line will be
narrower than it is perpendicular to the flight direc-
tion. With this deliberate configuration, platform
flight at a rotation angle from the flight direction
can help to achieve higher spatial resolution at the
cost of a narrower image scene, as in the case of
SPOT 5 in high-resolution mode.

The sensor status (v, f, k) parameters are
the most sensitive to the image geometry. A tiny
displacement of sensor status can translate to sig-
nificant distortion in image pixel position and scale.
Great technical effort has been devoted to achieve
very precise status control for modern Earth

fl fs

Imaging plane of 
focal length fl

Imaging plane of 
focal length fs

G
round

Figure 9.2 The relationship between focal length and geometric distortion. A sensor with a shorter focal length ( fs)
can cover the same field of view in a much shorter distance than that with a longer focal length ( fl) but with more
significant geometric distortion of tall ground objects and high terrain relief

Figure 9.1 Earth observation satellite imaging geome-
try. For the platform flight coordinate system (x, y, z), x is
in the flight direction, z is orthogonal to x and in the plane
through the x axis and perpendicular to the Earth’s
surface, and y is orthogonal to both x and z. The sensor
status is decided by orientation angles (v, f, k) in
relation to the platform flight coordinate system (x, y, z).
The coordinates (X, Y, Z), of the imaging position usually
conform to a standard coordinate system (of defined
map projection and datum)
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observation satellites, to reduce sensor status distor-
tion to a minimum and thus to satisfy most applica-
tions. For airborne sensor systems, the stability of the
platform is often problematic, as demonstrated in the
airborne thematic mapper image in Figure 9.5. This
type of error can be corrected using onboard flight
status parameters, to some extent, though the errors
are often too severe to be corrected for.

9.1.2 Earth rotation and curvature

For spaceborne Earth observation remote sensing,
the sensor system onboard a satellite images a 3D
spherical land surface with topographic relief
onto a 2D flat image. Geometric distortion and
position inaccuracy are inevitable. Fortunately,
over centuries, photogrammetric (or geomatic)
engineering has developed many effective map
projection models to achieve the optimized trans-
lation of the Earth’s spherical surface to a flat
surface of maps and images. The most widely
used map projection system is the UTM (Univer-
sal Transverse Mercator) with either the WGS84
global datum or a local datum. We are going to
revisit the topic of map projection in greater detail
in Chapter 13 in Part Two of the book. One of the
major tasks of image geometric operation is to
rectify an image to a givenmap projection system.
The process is often called geocoding or
georeferencing.

Many Earth observation satellites are config-
ured to fly in circular, near-polar, Sun-synchronous
orbits, so as to image nearly every part of the Earth
at about the same local time. In such an orbit, a

Figure 9.5 Image scan line distortion in an ATM image, as caused by aircraft yaw

Figure 9.4 The effects of sensor status in relation to
image scanner orientation: (a) the scanning direction is
perpendicular to the flight direction; and (b) the scan-
ning direction is oblique to the flight direction, because
the sensor/platform has a rotation angle relating to the
flight direction. Consequently, the swath of the image
becomes narrower

(a) (b)

Figure 9.3 Central projection distortion for nadir view (a) and oblique view (b) imaging
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satellite travels nearly perpendicular to the Earth’s
rotation direction. This is not a problem for an
instant image taken by a camera as all the pixels in
the scene are taken simultaneously. It becomes
a problem for a scanner, however, which is still
(so far) the dominant design for spaceborne sensor
systems; the image is built line by line in a time
sequence with the satellite flying above the rotat-
ing Earth. As shown in Figure 9.6, for an along-
track push-broom scanner, the Earth’s surface is
imaged in consecutive swaths in the time interval
of a scanning cycle (or scanning frequency) to
build a sequence of image lines in the flight
direction of the satellite. The Earth’s rotation
causes the longitude position to move westwards
in each scanning cycle and, as a result, the image
built up is not a rectangular stripe but a parallelo-
gram stripe which is skewed to the west in the
imaging advancing direction. For the scenario of
an across-track two-way scanner (e.g. thematic
mapper), the distortion pattern is more complicat-
ed because every pixel along a swath is imaged at a
different time and the actual scanning speed at the
Earth’s surface changes not only from nadir to the
edge of a swath but also between swaths for and
against the Earth’s rotation. The processing to
compensate for the Earth’s rotation in relation to
the scanning mechanism is usually done in bulk
geometric correction by the ground assembly fa-
cilities, e.g. the receiving station, using batch
processing algorithms based on sensor/platform
configuration parameters. The images after bulk
processing to de-skew and crudely geocode are
usually labelled as L-1B data.

9.2 Polynomial deformation
model and image warping
co-registration

Based on the above discussion, we can generally
assume that a remotely sensed image has some
geometric distortion as a result of image acquisition.
Given a reference map projection or a reference
image which is either geometrically correct or
regarded as a geometric basis of a set of images,
the main task of geometric operations is to establish
a deformation model between the input image and
the reference and then rectify or co-register the input
image to the reference to generate an output image.
In this way, the geometric distortion of the input
image is either corrected or co-registered to a
standard basis for further analysis.

The so-called rubber sheet warping, based on a
polynomial deformation model, is the most impor-
tant and commonly used geometric transformation
for remotely sensed image data. There are several
types of image warping:

. Image to map projection system (e.g. UTM)

. Image to map (e.g. a topographic map)

. Image to image.

The geometric transformation includes two
major steps:

1. Establish the polynomial deformation model.
This is usually done using ground control points
(GCPs).

Figure 9.6 The skew effect of the Earth’s rotation on a push-broom scanner onboard an Earth observation satellite
in a circular, near-polar, Sun-synchronous orbit. The image is recorded as left but the actual area covered on the surface
of the Earth is as right
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2. Image resampling based on the deformation
model. This includes resampling image pixel
positions (coordinates) and DNs.

9.2.1 Derivation of deformation model

A deformation model can be derived by fitting
a polynomial function to ground control point
locations. This is done by selecting many GCPs
representing the same ground positions in both the
input image and the reference (an image or a map)
to establish a deformation model, and then trans-
forming the input image to the output image that is
forced to fit the reference geometry.

In simple terms, this means transforming
each pixel of the input image to the output image
(input-to-output mapping) based on the deforma-
tion model, but a pixel position in an image is given
in integers of line and column, while the transfor-
mation between the input and the output images
may not always correspond exactly to integer posi-
tions for every pixel.Many pixels in the input image
may take decimal positions, overlap or be apart
from each other resulting in ‘black holes’ in the
output image. The input-to-output mapping cannot
therefore generate an output image as a proper,
regular raster image. To solve the problem, a com-
monly used approach is output-to-input mapping.

Suppose transformation M is an output-to-input
mapping that maps an output pixel at position (i, j)
back to the input image at location (k, l); then
the output image can be generated as shown in
Figure 9.7. For each output pixel position (i, j),
computation from M(i, j) gives the corresponding
position (k, l) in the input image and then, at this
position, a pixel value Pi(k, l) is picked up and
assigned to theoutput pixelPo(i, j).Theoutput image
is completed when all the pixels have been assigned.

The question now is how to derive a deformation
model, or the transformationM. Let (k, l) represent
the position in the input image corresponding to the
output position (i, j); then the general form of the
polynomial approximation for k and l is

M :

k ¼ Qði; jÞ
¼ q0 þ q1iþ q2jþ q3i

2 þ q4ijþ q5j
2 þ � � �

l ¼ Rði; jÞ
¼ r0 þ r1iþ r2jþ r3i

2 þ r4ijþ r5j
2 þ � � �

8>><
>>:

ð9:1Þ

Formula (9.1) defines the transformation M that
calculates the approximation of the input position
(k, l) from a given output position (i, j), if the
coefficients Q¼ (q0, q1, q2, . . .)

T and R¼ (r0, r1,
r2, . . .)

Tare known. For n pairs of GCPs, we already
know both (k, l) and (i, j) for every GCP, so the least
squares solutions forQ andR can be derived. From
n GCPs, we can establish n pairs of polynomials
based on (9.1) written in matrix format as

K ¼ MQ

L ¼ MR
ð9:2Þ

where

K ¼

k1

k2

..

.

kn

0
BBBBB@

1
CCCCCA; L ¼
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l2

..

.

ln

0
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q0

q1

q2

..

.

0
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..
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Figure 9.7 Output-to-input mapping
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The least squares solution for Q is

Q ¼ ðMTMÞ� 1MTK: ð9:3Þ

Similarly, for R,

R ¼ ðMTMÞ� 1MTL: ð9:4Þ

Once the coefficients Q¼ (q0, q1, q2, . . .)
T and

R¼ (r0, r1, r2, . . .)
T are derived from the GCPs,

the pixel position relationship between the input
and output images is fully established through the
transformation M. Given a location (i, j) in the
output image, the corresponding position (k, l)
in the input image can then be calculated from the
transform M using Equation (9.1). Theoretically,
the higher the order of the polynomials, the higher
the accuracy of warping that can be achieved,
but the more the number of control points needed.
A linear fit needs at least three GCPs, a quadric
fitting six and a cubic fitting ten.

9.2.2 Pixel DN resampling

In the output-to-input mapping model, the output
pixel at position (i, j) is mapped to its corresponding
position (k, l) in the input image by the transformM.
In most cases, (k, l) is not an integer position and
there is no pixel DN value ready for this point.
Resampling is an interpolation procedure used to
find theDN for position (k, l) in the input image so as
to assign it to the pixel Po(i, j) in the output image

(Figure 9.7). The simplest resampling function is
the nearest neighbourmethod (Figure 9.8), inwhich
pixel Po(i, j) is assigned the DN of the input image
pixel nearest to position (k, l).

A more accurate and widely used method is
bilinear interpolation, as defined below (Fig-
ure 9.9):

t1 ¼ PiðK; LÞð1� cÞþPiðK þ 1; LÞc
t2 ¼ PiðK; Lþ 1Þð1� cÞþPiðKþ 1; Lþ 1Þc
Poði; jÞ¼ t1ð1� dÞþ t2d ð9:5Þ
where,

Pi(K, L) is an input pixel at an integer position (K, L)
in the input image
Po(i, j) is the output pixel at an integer position (i, j)
in the output image, which corresponds to Pi(k, l)
at a decimal position (k, l) in the input image

d

c

(k,l)

t1

t2

Pi (K+1,L)

Pi (K,L)

Pi (K,L+1)

Pi (K+1,L+1)

Po(i,j)=Pi (k,l)

Figure 9.9 Illustration of bilinear interpolation

Output image 

pixel Po(i,j)

Input image

(k,l)

Figure 9.8 Illustration of nearest neighbour DN resam-
pling. The nearest neighbour of the output pixel Po(i, j) in
the input image is the pixel at the bottom right and
therefore the DN of this pixel is assigned to Po(i, j)
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K is the integer part of k
L is the integer part of l
c¼ k�K
d¼ l� L.

Quadric and cubic polynomials are also popular
interpolation functions for resampling with more
complexity and improved accuracy.

9.3 GCP selection and automation

9.3.1 Manual and semi-automatic
GCP selection

GCPs can be selectedmanually, semi-automatically
or automatically. These points are typically distinc-
tive corner points with sharp contrast to their
surroundings. For the manual method, the accuracy
of the GCPs depends totally on the user’s shaking
hands. It is often not easy to locate accurately the
corresponding points in the input and reference
images. A simple approach can improve the
efficiency and accuracy for manual GCP selection.
Firstly, select four GCPs spread in the four corners
of the input and the reference images and thus
an initial geocoding frame (a linear fitting transfor-
mation M) is set up based on these four GCPs.
Using four instead of the minimum three GCPs for
the linear fitting can allow initial error estimation.
After this initial setup, once a GCP is selected in the
reference image, the corresponding position in the
input image is roughly located based on the initial
geocoding frame. A user only needs to fine-tune
the position and confirm the selection. The trans-
formationM will be continuously updated as GCPs
are added, via the least squares solution.

The semi-automatic method allows users to
identify GCPs in corresponding (input and refer-
ence) images and then automatically optimize
point positions from one image to the other using
local correlation. Suppose the GCP in the input
image is at a position (k, l); the optimal coordinates
of this point in the reference image are then
decided when r(k,l), the normalized cross-
correlation (NCC) coefficient between the input
image and reference image at position (k,l),
reaches the maximum in an lw� sw calculation
window used to roam in an ls� ss searching area

in the reference image surrounding the roughly
selected position of the GCP:

rðk; lÞ ¼

Plw
i¼1

PSw
j¼1

ðwi;j� �wÞðsk�1þ i;l�1þ j��sk;lÞ

Plw
i¼1

PSw
j¼1

ðwi;j� �wÞ2
" #1=2

� Plw
i¼1

PSw
j¼1

ðsk�1þ i;l�1þ j��sk;lÞ2
" #1=2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Y max

where ðwi;j� �wÞ is calculated from the input image
while ðsk�1þ i;l�1þ j��sk;lÞ is from the reference
image.

Instead of NCC, a relatively new technique,
phase correlation, can be used to locate directly the
matching pixels in corresponding images at sub-
pixel accuracy without roaming search. A totally
different image co-registration method based on
phase-correlation-derived sub-pixel optical flow
will be introduced in Section 9.4.

9.3.2 �Towards automatic GCP selection

Automatic GCP selection is an ongoing topic of
research. It belongs to a very active research field in
computer vision: feature tracking. Automatic GCP
selection enables the automation of image-to-image
co-registration. A workable automatic GCP selec-
tion method must be able to accurately select ade-
quate high-quality GCPs that are evenly spread
across the whole image to be co-registered. In
general, it comprises two steps:

1. Automatic selection of corner points from one of
the two corresponding images (either the input
imageor the reference image) as candidateGCPs.

2. Automatic location of the corresponding
points in the other image via local correlation.
High-quality GCPs are finally selected by
their correlation level and spatial distribution.

The first step is the key to the automation of GCP
selection. When manually selecting GCPs, we typi-
cally look for corner points such as corners of
buildings, road junctions, sharp river bends and

(9.6)

CH9 IMAGE GEOMETRIC OPERATIONS 111



sharp topographic features. These points in images
are of high contrast and can be characterized into
five types: L-corner, Y-junctions, T-junctions,
arrow-junctions and X-junctions, as presented in
Figure 9.10.

Great effort has been put into developing effec-
tive techniques for corner point detection from
digital images. Some or the more commonly used
techniques are based on an autocorrelation matrix.
Following the convention in the description of
autocorrelation, we use I(x, y) to demote an
image function (the DN of any an image pixel at
position x, y). Given a shift (Dx, Dy), the autocorre-
lation at pixel (x, y) is defined as

cðx;yÞ¼
X
W

½Iðxi;yiÞ� IðxiþDx;yiþDyÞ�2 ð9:7Þ

where I(xi, yi) denotes the image grey value at
pixel position (xi, yi) in the 2D calculation window
W (with a Gaussian weighting function) centred
at (x, y).

Consider a first-order approximation based on
the Taylor expansion:

IðxiþDx;yiþDyÞ� Iðxi;yiÞ

þ½Ixðxi;yiÞIyðxi;yiÞ�
Dx

Dy

 !
:

ð9:8Þ

Combining (9.7) and (9.8) yields

Equation (9.9) shows that the autocorrelation
function can be approximated by the autocorrela-
tion matrix A(x, y). This matrix captures the struc-
ture of the neighbourhood, and its eigenvalues l1
and l2 are proportional to the principal curvatures of
the local autocorrelation function and form a rota-
tion-invariant description of the matrix A(x,y).
Based on the magnitudes of the eigenvalues, the
following inferences can be made:

1. If l1¼ 0 and l2¼ 0, the matrix is of rank 0; there
are no features of interest at the image position
(x, y) that is in a flat region.

2. If l1¼ 0 and l2 is some large positive value, the
matrix is of rank 1 and an edge is found where no
changes occur along the edge direction.

3. If l1 and l2 are both large, distinct, positive
values, the matrix is a full-rank matrix. Signifi-
cant changes are found in orthogonal directions
and a corner is found.

Based on the above properties of the autocorre-
lation matrix A(x, y), many corner detectors were
proposed and, among them, a simple and effective
technique based on Shi and Tomasi (1994) is intro-
duced as

minðl1; l2Þ>lc ð9:10Þ
where lc is a predefined criterion of the minimum
eigenvalue.

An image pixel is accepted as a good corner
point if its autocorrelation matrix satisfies the con-
dition set by formula (9.10) that assures that both
eigenvalues are sufficiently large. Figure 9.11 illus-
trates the acceptance area in (l1, l2) coordinates for
a given lc. The range of l1 and l2 is usually
[0, 15 000] for typical remotely sensed images.
Once adequate high-quality corner points are

cðx; yÞ ¼
X
W

½Ixðxi; yiÞIyðxi; yiÞ�
Dx
Dy

 !" #2

¼ DxDyð Þ

X
W

ðIxðxi; yiÞÞ2
X
W

Ixðxi; yiÞIyðxi; yiÞ
X
W

Ixðxi; yiÞIyðxi; yiÞ
X
W

ðIyðxi; yiÞÞ2

0
BB@

1
CCA Dx

Dy

 !

¼ DxDyð ÞAðx; yÞ Dx
Dy

 !
:

ð9:9Þ

Figure 9.10 Five types of corner points: L-corner, Y-
junctions, T-junctions, arrow-junctions and X-junctions
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selected from one image, then the matching points
in the corresponding image for co-registration can
be located by local correlation through either NCC
or phase correlation. As both the automatic and
semi-automatic GCP selection methods must be
based on local correlation, they are not suitable for
co-registration between an image and a digital map
as map features are synoptic and not necessarily
correlated to image features. Methods of this type
perform poorly where there are significant differ-
ences in scale and spatial resolution between the
images being co-registered.

9.4 �Optical flow image
co-registration to sub-pixel
accuracy

The classical approach to image warping co-regis-
tration, based on a polynomial deformation model
derived from GCPs, can be quite accurate if the
GCPs are of high positional accuracy, but registra-
tion by this method is not achieved at the pixel-to-
pixel level. The registration error within a scene
may vary from place to place according to the
local relative deformation between the images. The
imaging-geometry-related systematic deformation
can be modelled and compensated for, but the

irregular deformation caused by sensor optical
quality, platform status precision and so on cannot
be effectively corrected using GCP deformation-
model-based approaches.

A different approach for image co-registration is
the forcedpixel-to-pixel image co-registrationmeth-
od (Lucas and Kanade, 1981). Instead of using a
transform grid determined by the GCP coordinate
transformation, this approach achieves image co-
registration pixel by pixel via image local spatial
feature matching. This is fundamentally different
from image warping and constitutes image co-reg-
istration but not georectification. In other words, an
image cannot be transformed to a given map projec-
tion based on themap coordinates using thismethod,
whereas it can be done usingGCP-based techniques.
The pixel-to-pixel image co-registration can achieve
image georectification only when the reference im-
age is geocoded. The advantage of precise feature
matching at the pixel-to-sub-pixel level makes the
technique a superior tool for very demanding quan-
titative change detection tasks, such as monitoring
the spatial, geometric, positional and spectral
changes of sensitive ground targets from space.

Precise image feature matching has to be done at
a sub-pixel level as it is unlikely that the feature
mismatching between two images will always
be at an integer pixel position; as indicated earlier,
a pixel in one image often corresponds to a decimal
pixel position in the other. Techniques that can
achieve image feature matching at sub-pixel
accuracy hold the key for pixel-to-pixel image
co-registration.

The recent development of phase correlation al-
gorithms, namely singular value decomposition
(SVD) (Hoge, 2003) and robust 2D fitting (Balci
and Foroosh, 2005; Liu and Yan, 2006), enables
calculation of image shift, rotation and scale change
at better than 1/20th pixel accuracy. Based on these
algorithms, a robust pixel-to-pixel image co-
registration method is developed (Liu and Yan,
2008).

9.4.1 Basics of phase correlation

Phase correlation is based on the well-known
Fourier shift property: a shift in the spatial coordi-
nate frame between two functions results in a linear

1

2
1 = 2

o
c

c

Figure 9.11 For a given criterion lc, the corner detector
defined in formula (9.10) accepts the points in the white
area and rejects those in the shaded area
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phase difference in the frequency domain of the
Fourier transform (FT) of the two functions. Given
two2D functions g(x, y) and h(x, y) representing two
images related by a simple translational shift a in the
horizontal and b in the vertical direction, h(x, y)¼
g(x þ a, y þ b), and the corresponding FTs are
denoted G(u, v) and H(u, v), then

Hðu; vÞ ¼ Gðu; vÞe� iðauþ bvÞ: ð9:11Þ
The phase correlation is defined as the normalized
cross-power spectrum between G and H, which is a
matrix:

Qðu; vÞ ¼ Gðu; vÞHðu; vÞ*
jGðu; vÞHðu; vÞ*j ¼ e� iðauþ bvÞ: ð9:12Þ

IfG(u, v) andH(u, v) are continuous functions, then
the inverse Fourier Transform (IFT) of Q(u, v) is a
delta function:

qðx; yÞ ¼ dðx� a; y� bÞ ð9:13Þ

where the function peak identifies the magnitude of
the shift (Stiller and Konrad, 1999). For the case of
raster data of imagery, which is a discrete 2D
function, q(x, y) presents a delta-like function as if
a and b are integers and, subsequently, the transla-
tion estimate between the two similar images can
only be performed at integer (pixel) accuracy even
though the true shifts a and b may well be real
numbers with decimal parts (or sub-pixels). The
delta function defined by (9.13) is therefore not an
ideal solution.

As the magnitude of Q(u, v) is normalized to 1,
the only variable in (9.12) is the phase shift defined
by au þ bv where a and b are the horizontal and
vertical magnitudes of the image shift between
g(x, y) and h(x, y). Obviously, if we can solve a
and b accurately based on the phase correlation
matrix Q(x, y), then the non-integer translation
estimate at sub-pixel accuracy can be achieved in
the frequency domain without the IFT. Two algo-
rithms are proposed: the SVD method and the 2D
fitting method. Such a direct frequency domain
solution has proven more accurate and faster than
that based on the delta function of (9.13) via IFT.
The SVD method deals better with the large mag-
nitude of image frame shifts and low correlation,
while the robust 2D fitting method is much faster.

For image rotation, consider image f2 as a replica
of image f1 with rotation u0. Then they are related by

f2ðx; yÞ ¼ f1ðx cosu0 þ y sinu0; � x sinu0 þ y cosu0Þ:
ð9:14Þ

The Fourier rotation property shows that the FTs
between f1 and f2 are related by

F2ðj;hÞ ¼ F1ðjcosu0 þhsinu0; � jsinu0 þhcosu0Þ:
ð9:15Þ

If the frequency domain is represented in polar
coordinates, then the rotation will be an angular
shift on the angle coordinate. In a polar coordinates
system, we then have

F2ðr; uÞ ¼ F1ðr; u� u0Þ: ð9:16Þ
The rotation can thus be found as a phase shift in the
frequency domain that again can be determined by
phase correlation (Reddy and Chatterji, 1996). As
rotation involves significant pixel shift away from
the rotation centre, only the SVDalgorithm is robust
enough to measure it (Liu and Yan, 2006).

If image f2 is a replica of f1 scaled by (a, b), then
they are related by

f2ðx; yÞ ¼ f1ðax; byÞ: ð9:17Þ
The Fourier scale property shows the transforms are
related by

F2ðj;hÞ ¼ 1

jabjF1
j

a
;
h

b

� �
: ð9:18Þ

Ignoring the multiplicative factor and taking loga-
rithms,

F2ðlog j; loghÞ ¼ F1ðlog j� log a; logh� log bÞ:
ð9:19Þ

Thus a change in scale can be determined based on
a phase shift in the frequency domain presented
in logarithmic coordinate units and thus again can
be determined by phase correlation (Reddy and
Chatterji, 1996).

9.4.2 Basic scheme of pixel-to-pixel image
co-registration

The SVD algorithm is robust for the orientation and
matching of a pair of large imageswith considerable
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frame shift, rotation and minor scale change, and
relatively low spectral correlation, while the 2D
fitting is much faster and more reliable in small-
window feature matching. With these considera-
tions in mind, a phase correlation pixel-to-pixel
image co-registration scheme is outlined below and
illustrated in Figure 9.12:

1. Given two images for co-registration, set one as
the Input and the other the Reference, and then
the Output image frame is set based on the
Reference image. If the pixel sizes of the two
images are different, the lower resolution image
should be oversampled to the same pixel size of
the higher resolution image.

2. Apply the SVD phase correlation algorithm to a
square region roughly covering the common area
between the Input and the Reference images.
This will determine the frame shift, rotation and
scale change between these two images. Then
the Input image is roughly oriented to the Refer-
ence image by standard routines of image shift,
rotation and scale change. The image rotation
and minor scale change may introduce geomet-
ric errors from interpolation and resampling but
these will largely be eliminated by the later steps
of the pixel-to-pixel image co-registration based
on the precisemeasurements of the shift between
every pair of corresponding pixels.

3. Scan the oriented pair of images using 2D fitting
phase correlation with a 64� 64 calculation
window, from the first effective calculation po-
sition (the pixel at line 32 and column 32 of the
upper left corner of the overlapped image area)
to the last effective calculation position (the
pixel that is at line 32 and column 32 to the

bottom-right corner of the overlapped image
area). Thus the relative column and line shifts
(dx, dy) between any pair of corresponding
pixels in the Input and the Reference images are
determined. This process produces the optical
flow images of local feature shift in column and
line directions, DX and DY.

4. Then an Output-to-Input mapping procedure
is employed to carry out pixel-to-pixel co-
registration, rectifying the Input image precisely
to match the Reference image. This process
builds up an Output image based on the Refe-
rence pixel positions and Input pixel DNs. Spe-
cifically, at each integer pixel position of the
Output image, the pixel DN is drawn from its
precise corresponding position in the Input im-
age based on the shifts (dx, dy), where dx2DX,
dy2DY, via bilinear interpolation.

The above scheme registers the Input image to the
Reference image pixel-by-pixel to formulate the
Output (co-registered) image. With the sub-pixel
resolution of (dx, dy) calculated via phase correla-
tion, the Output image matches the Reference
image at a sub-pixel resolution at every pixel.

9.4.3 The median shift propagation technique

As shown in Figure 9.13, the phase correlation may
fail in featureless areasandareasof significant spectral
differences between the Input image (Figure 9.13a)
and the Reference image (Figure 9.13b) because of
low correlation. As a result, drastic errors of registra-
tion may occur in the Output image (Figure 9.13c)
because the feature shifts in these areas, measured
using phase correlation, are incorrect. These errors are
illustrated by feature shift vectors, of randomdirection
and magnitude, in the optical flow DX and DY
(Figure 9.13d). Image pixels in these areas are char-
acterized by their low correlations.

As the magnitude of phase correlation is unified,
it does not give a direct measure of correlation
quality. The correlation quality can, however, be
reliably assessed based on the 2D fitting quality via
the regression coefficient of determination (RCD)
in a normalized value range [0, 1]. A correlation
quality assessment image can then be generated
together with the shift images DX and DY by 2D
fitting phase correlation scanning. Thus the

Input
image 

Reference
image 

SVD phase 
correlation
orientation

2D fitting 
phase

correlation
scan

X

Y

Output
image 

Figure 9.12 Schematic illustration of phase correlation
pixel-to-pixel co-registration
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low-quality shift measurement data can be identi-
fied and masked off with a Null value from DX and
DY by an RCD threshold, say at RCD < 0.75
(Figure 9.13e).

Now the problem is how to fill the gaps in the
masked DX and DY images with shift values of
reasonable quality. A simple and effective solution
for the problem is the median shift propagation
(MSP) as detailed below (Liu and Yan, 2008):

1. Scan the masked DX and DY images to search for
a gap.

2. Whenever a Null value is encountered, a median
filtering mechanism in a calculation window, for
example 5� 5 pixels, is applied to the shift

images DX and DY. This process replaces the
Null with the median of the values of non-Null
value pixels in the calculation window.

3. Continue the median filtering on the modified
DX and DY, till all the gaps are filled, to form
a smooth optical flow in Figure 9.13f. The
key difference between the MSP and ordinary
median filtering is that instead of always apply-
ing the filter to the original DX and DY image,
the filter is applied to the DX and DY images
that are modified by the last filtering action.
In such a way, the DX and DY images are updated
continuously during the filtering process and
the feature shifts are thus self-propagated from
high-quality data to fill the Null value gaps.

Figure 9.13 Illustration of the MSP technique: (a) the Input image, ETMþ Pan; and (b) the Reference image,
ASTER band 3. The two images have significant spectral differences and several featureless areas. (c) The initial Output
image is contaminated bymis-registration errors in the featureless and spectrally different areas. (d) The vector optical
flow of DX and DY (resampled at 8 pixel interval and magnitude enlarged by four times for illustration) indicates that
these errors result from the malfunction of phase correlation in feature shift measurement. (e) The low-correlation
quality areas are masked off based on RCD < 0.75. (f) The gaps are smoothly filled using the MSP. (g) The final Output
image shows that the co-registration errors are effectively eliminated
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4. With the DX and DY images refined by the MSP,
the Input image patches in the low-correlation
areas are correctly rectified, by the geometry of
the Reference image, into the Output image
(Figure 9.13g).

Thoughwe borrowed the term ‘median filter’, the
process is not filtering but self-propagating via the
median. As shown in Figure 9.14a, the 3� 3 gap
area in the box with a bold frame can be filled
gradually via median propagation from the data in
the top two lines and left two columns using a 5� 5
processing window. The first cell (top left) in this
3� 3 gap area is filled with the median, which is
1.58, of its surrounding 5� 5 neighbourhoods. The
second cell (top middle) is filled with the median of
the non-Null value pixels in its surrounding 5� 5
neighbourhoods including the just-filled data in the
first cell, 1.58, and so on. As such, the 3� 3 gap area
is filled up as shown in Figure 9.14b. If there is an
even number of values within the 5� 5 neighbour-
hoods, the average of the middle two values is used.

9.4.4 Summary of the refined pixel-to-pixel
image co-registration and assessment

Incorporating the MSP, the phase correlation pixel-
to-pixel image co-registration scheme is refined as
below:

1. For the given two images for co-registration, set
one as Input and the otherReference and then the

Output (co-registered) image frame is set based
on the Reference image.

2. Apply SVD phase correlation to orientate the
Input image to the Reference image by simple
shift, rotation and minor scale change.

3. Scan the orientated Input and Reference images
using 2D fitting phase correlation with a 64� 64
calculation window to produce the images of
column and line shifts between the Input and the
Reference images, DX and DY.

4. Meanwhile, the RCD image recording the
correlation quality between every pair of corre-
sponding pixels of Reference and Input images
is generated. The low-correlation areas in the
DX and DY images are masked off with a thresh-
old of RCD < 0.75.

5. Apply the MSP technique to fill the gaps in the
masked DX and DY images produced in the
previous step.

6. Use Output-to-Input mapping to build the
Output image pixel by pixel based on the shift
between the Input and the Reference images,
dx2DX, dy2DY.

This scheme will generate an Output image
that is co-registered to the Reference image at the
sub-pixel level, from the Input image.

Figure 9.15 presents the colour composites of a
Terra-1 ASTER band 3 in green and a Landsat-7
ETMþ Pan image before and after co-registration
in red. The two images covering the same area
were taken from different satellite platforms with

Figure 9.14 Numerical explanation of the MSP: (a) the NCC masked shift image (e.g. DX) with good-quality data in
bold font and gaps; and (b) the numbers in italics in the central 3� 3 box with a bold frame are filled via the MSP from
the existing quality data
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different sensors. ETMþ is a two-way across-track
scanner while ASTER is an along-track push-
broom scanner. Both images are of 15m spatial
resolution but in different spectral bands:
0.52–0.9mm for the ETMþ Pan and 0.76–0.86mm
for the ASTER band 3. There are shift, rotation and
irregular geometrical variations, causing apparent
mismatching between the two images, as well
as spectral differences, as shown in Figure 9.15a.
The ETMþ Pan image is then pixel-to-pixel
co-registered to the ASTER band 3 image. The
crystal sharpness of Figure 9.15b indicates a very
high quality of co-registration in every part of the
image where the red and green patches reveal the
spectral changes or differences between the two
images, illustrating the capability of the method for
change detection.

Pixel-to-pixel image co-registration may fail
if large parts of the images are of low correlation
because of widespread spectral differences and
featureless areas, or the two images are taken in
very different illumination conditions. In this case,
manual GCP-based co-registration is more robust
as the human eye can pick up GCPs based on
comprehension of textures and spatial patterns. In
summary, GCP-based image warping is versatile
for general purpose raster data co-registration and

georectification, whereas phase-correlation-based
pixel-to-pixel image co-registration is only suitable
for imageswith similar properties, though it achieves
sub-pixel co-registration accuracy for every image
pixel.

9.5 Summary

After a brief discussion of the major sources
of geometric deformation in remotely sensed
images acquired by Earth observation satellites,
we introduced the details of image warping co-
registration based on a polynomial deformation
model derived from GCPs. The key points for this
popular method are as follows:

1. The accuracy of a polynomial deformation
model largely depends on the quality, number
and spatial distribution of GCPs, but also on the
order of the polynomials. A higher order poly-
nomial requiresmoreGCPs andmore computing
time with improved accuracy. The most com-
monly used polynomial deformation models
are linear, quadratic and cubic.

2. The co-registered image is generated based
on an output-to-input mapping procedure to

Figure 9.15 Red and green colour composites of (a) the original ETMþ Pan image in red and the ASTER band 3 image
in green and (b) the co-registered ETMþ Pan image in red and the ASTER band 3 image in green. The crystal sharpness of
(b) indicates that the ETMþ Pan image is very accurately co-registered to the ASTER band 3 image pixel by pixel and the
red and green patches highlight the areas of significant spectral differences between the two images
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avoid pixel overlaps and holes in the output
image. In this case, pixel DN resampling is
necessary to draw DNs in non-integer positions
in the input image for a DN in the corresponding
integer position in the output image via nearest
neighbour or bilinear interpolation.

Given that GCP selection is of vital importance
for the accuracy and automation of image warping
co-registration, we then focused on techniques for
manual, semi-automatic and automatic GCP selec-
tions. AutomaticGCP selection is an active research
field. The key for the automation ofGCP selection is
the automatic detection of corner points which are
good candidates for GCPs. As an example and for
advanced readers, we have presented a simple and
effective corner detector, based on the autocorrela-
tion matrix.

Finally, for further reading, an optical flow image
co-registration method to sub-pixel accuracy is
presented in detail. The optical flow image co-
registration is based on pixel-to-pixel local feature
matching, which is fundamentally different from
the deformation-model-based imagewarpingmeth-
ods. The phase correlation technique is used to
achieve precise feature matching at sub-pixel pre-
cision. The method ensures the high quality of
image co-registration at every image pixel regard-
less of the irregular deformations between the two
images, and therefore can achieve much higher co-
registration accuracy than deformation-model-
based image warping co-registration methods
which cannot handle irregular deformations. The
pixel-to-pixel co-registration method is not, how-
ever, a georectification process and so is not versa-
tile for dealing with raster datasets of very different
properties.

Questions

9.1 Describe, using a diagram, the relationship
between satellite flight direction, sensor status
and imaging position on the ground.

9.2 Give an example of how the instability of
sensor status produces geometric errors.

9.3 What is the best sensor status that introduces
minimal geometric distortion for Earth obser-
vation remote sensing?

9.4 Explain the relationship between focal
length f and topographic distortion using a
diagram.

9.5 Explain the relationship between imaging
geometry and topographic distortion using a
diagram.

9.6 Explain why de-skewing processing is
essential for images acquired by a scanner
onboard a satellite in a circular, near-polar,
Sun-synchronous orbit. If a camera instead of
a scanner is used for imaging, do you think
that de-skewing processing is necessary and,
if so, why?

9.7 What is output-to-input mapping (explain
using a diagram) and why is it necessary for
image warping co-registration?

9.8 How is the transformation, M, established in
a polynomial deformation model?

9.9 How many GCPs are required to establish
a linear, quadratic and cubic polynomial
deformation model? Can you write down
these polynomials?

9.10 From a diagram, derive the bilinear inter-
polation for pixel DN resampling. Calculate
Pi(5.3, 4.6) given Pi(5, 4)¼ 65, Pi(6, 4)¼ 60,
Pi(5, 5)¼ 72 and Pi(6, 5)¼ 68.
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10
�Introduction to Interferometric
Synthetic Aperture Radar Techniques

In this chapter, we introduce some advanced inter-
ferometric synthetic aperture radar (InSAR) tech-
niques for 3D terrain representation, for quantitative
measurements of terrain deformation and for the
detection of random land surface changes. InSAR is
not normally covered by the general scope of image
processing but it has become a widely used appli-
cation of SAR data analysis in remote sensing.
Many InSAR image processing software packages
have now been developed and some popular image
processing systems now include some InSAR
functionality.

10.1 The principle of a radar
interferometer

For many remote sensing applications, we use
processed multi-look SAR images. These products
represent images of the averaged intensity (or am-
plitude) of multiple radar looks to reduce radar
speckles. The original SAR image representing all
the information from the return radar signals is a
single look complex (SLC) image. An SLC image is
composed of complex pixel numbers which record
not only the intensity (the energy of microwave
signals returned from targets) but also the phase of

the signal which is determined by the distance
between the target and the radar antenna.

Given a complex number of an SLC pixel, c¼
a þ ib, i ¼ ffiffiffiffiffiffiffi�1

p
, the magnitude of c is Mc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

, which formulates the SAR intensity
image,while thephaseangleofc isw ¼ arctanðb=aÞ.

InSAR technology exploits the (commonly
ignored) phase information in SAR SLC images
for Earth and planetary observations. An SAR
interferogram shows the phase differences between
the corresponding pixels of the same object in two
SAR images taken from near-repeat orbits. It
represents topography as fringes of interference.
Based on this principle, InSAR technology has
been developed and used successfully for topogra-
phic mapping and measurement of terrain deforma-
tion caused by earthquakes, subsidence, volcano
deflation and glacial flow (Zebker and Goldstein,
1986; Gabriel, Goldstein and Zebker, 1989; Zebker
et al., 1994a, 1994b;Massonnet andAdragna, 1993;
Massonnet et al., 1993, 1994; Massonnet, Briole
and Arnaud, 1995; Goldstein et al., 1993). The
vertical accuracy is several tens of metres for DEM
generation and at the centimetre level for measure-
ment of terrain surface deformation.

A radar beam is nominally a single frequency
electromagnetic wave. Its properties are similar to
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those of monochromatic coherent light. When two
nearly parallel beams of coherent light illuminate
the same surface, an interferogram can be generated
showing the phase shift induced by the variation of
position and topography of the surface, as a result of
the interference between the two beams. The same
principle applies to the return radar signals. An SAR
interferometer acquires two SLC images of the
same scenewith the antenna separated by a distance
B called the baseline. For a single pass SAR inter-
ferometer, such as an SAR interferometer onboard
an aircraft or the Space Shuttle (e.g. SRTMmission,
see also Section 16.2.1), two images are acquired
simultaneously via two separate antennas: one
sends and receives the signals while the other
receives only (Figure 10.1a). In contrast, a repeat-
pass SAR interferometer acquires a single image
of the same area twice from two separate orbits
with minor drift which forms the baseline B
(Figure 10.1b); this is the case for ERS-1 and
ERS-2 SAR, ENVISAT ASAR, RADARSAT and
ALOS PALSAR.

The purpose of InSAR is to derive an SAR
interferogram, f, which is the phase difference
between the two coherent SLC images (often called
fringe pair). Firstly, the two SLC images are pre-
cisely co-registered pixel by pixel at sub-pixel
accuracy based on local correlation in combination
with embedded position data in SAR SLCs.
The phase difference f between the two corre-
sponding pixels is then calculated from the phase
angles w1 and w2 of these two pixels through their
complex numbers:

f ¼ w1�w2: ð10:1Þ

To understand the relationship between phase
difference and the InSAR imaging geometry, let us
consider an SAR system observing the same ground
swath from two positions, A1 and A2, as illustrated
in Figure 10.2. The ground point C is then observed
twice from distance r (slant range) and r þ d. The
distance difference between the return radar signals
for a round-trip is 2d and the measured phase
difference f (interferogram) is

f ¼ 4p
l
d ð10:2Þ

or 2p times the round-trip difference, 2d, in radar
wavelength l.

From the triangle A1–A2–C in Figure 10.2, the
cosine theorem provides a solution for d in terms of
the imaging geometry as follows:

ðrþ dÞ2 ¼ r2 þB2 � 2rB cos
p
2
�ðu�aÞ

h i
or

ðrþ dÞ2 ¼ r2 þB2 � 2rB sinðu�aÞ ð10:3Þ

B

(b)(a)

B

Send & receive 

Receive only 

Figure 10.1 (a) The single pass SAR interferometer with both an active antenna, sending and receiving radar signals,
and a passive antenna (separated by a distance B) for receiving signals only. (b) A repeat-pass SAR interferometer to
image the same area from two visits with a minor orbital drift B

z

B

//B

r+

r
h

B

A1 

A2

C

Figure 10.2 The geometry of radar interferometry
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where B is the baseline length, r the radar slant
range to a point on the ground, u the SAR look angle,
and a the angle of the baseline with respect to the
horizontal at the sensor.

The baseline B can be decomposed into two
components which are perpendicular B? and paral-
lel B// to the look direction:

B? ¼ B cosðu�aÞ ð10:4Þ

B== ¼ B sinðu�aÞ: ð10:5Þ

The InSAR data processing accurately calculates
the phase differencef between correspondingpixels
between a fringe pair of SLCSAR images to produce
an interferogram. The applications of InSAR are
largely based on the relationships between the inter-
ferogramf, topography and terrain deformation, for
which the baseline B, especially the perpendicular
baseline B?, plays a key role.

10.2 Radar interferogram and DEM

One major application of InSAR is to generate a
DEM. It is clear from Figure 10.2 that the elevation
of the measured point C can be defined as

z ¼ h� r cosu ð10:6Þ

where h is the height of the sensor above the refer-
ence surface (datum). This formula looks simple
but the exact look angle u is not directly known from
the SLC images. We have to find these unknowns
from the data which InSAR provides. From the SAR
interferogram f, we can express d by rearran-
ging (10.2) as

d ¼ lf
4p

: ð10:7Þ

Modifying (10.3) as a sine function of u�a,

sinðu�aÞ ¼ r2 þB2 �ðrþ dÞ2
2rB

: ð10:8Þ

In this equation, the baseline B and slant range r are
known and constants for both entire fringe pair

images, while the only variable d can be easily
calculated from phase difference f (SAR interfero-
gram) using Equation (10.7). Thus sin(u�a) is
resolved.

Expressing cos u in Equation (10.6) as a function
of a and sin(u�a),

z ¼ h� r cosu

¼ h� r cosðaþu�aÞ
¼ h� r cosa cosðu�aÞþ r sina sinðu�aÞ

¼ h� r cosa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin2ðu�aÞ

q
þ r sina sinðu�aÞ:

ð10:9Þ
In Equation (10.9), the angle of the baseline with

respect to the horizontal at the sensor, a, is a
constant for the SAR fringe pair images and
is determined by the imaging status, whereas sin
(u�a) can be derived from the interferogram f
using Equations (10.7) and (10.8), and the elevation
z can therefore be resolved.

In principle, we canmeasure the phase difference
at each point in an image and apply the above
three equations based on our knowledge of imaging
geometry to produce the elevation data. There is,
however, a problem in this: the InSAR measured
phase difference is a variable in the 2p period, or
is 2p wrapped. Figure 10.3 shows an interferogram
generated from a fringe pair of ERS-2 SAR
images; the fringe patterns are like contour lines
representing the mountain terrain but, numerically,
these fringes occur in repeating 2p cycles and
do not give the actual phase differences which
could be n times 2p plus the InSAR measured
phase difference. The phase information is recorded
in the SAR data as complex numbers and only
the principal phase values (fp) within 2p can be
derived. The actual phase difference should there-
fore be

f ¼ fp þ 2np: ð10:10Þ

Expressed in terms of the slant range difference,

d¼ lf
4p

¼ l
4p

ðfpþ2npÞ ¼ lfp

4p
þ nl

2
: ð10:11Þ

The interferometric phase therefore needs to
be unwrapped to remove the modulo-2p ambiguity
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so as to generate DEM data. For a perfect interfero-
gram modulo-2p, unwrapping can be achieved
accurately via a spatial-searching-based scheme but
the various decorrelation factors mean that SAR
interferograms are commonly noisy. In such cases,
unwrapping is an ill-portrayed problem. There are
many well-established techniques for the unwrap-
ping of noisy InSAR interferograms, each with its
ownmerits andweaknesses, but the search for better
techniques continues. The details of unwrapping are
beyond the scope of this book. There are also other
corrections necessary, such as the removal of the
ramps caused by the Earth’s curvature and by
the direction angle between the two paths as they
are usually not actually parallel. All the relevant
functionalities are available in commercially avail-
able InSAR software packages.

Wewill now prove that the elevation resolution is
proportional to the perpendicular baseline B?. The
partial derivative of elevation z to the slant range
increment d is

qz
qd

¼ qz
qu

� qu
qd

: ð10:12Þ

From (10.2),

qz
qu

¼ r sin u: ð10:13Þ

From (10.3),

qu
qd

¼ � rþ d

Br cosðu�aÞ : ð10:14Þ

Assuming that d is very small in comparison
with r,

qz
qd

¼ r sinu � rþ d

Br cosðu�aÞ
� �

� � r sinu

B cosðu�aÞ

¼ � r sinu

B?
:

ð10:15Þ

We can then derive the partial derivative of
elevation z to the change in phase difference (inter-
ferogram) f. From (10.7),

qd
qf

¼ l
4p

;
qz
qf

¼ qz
qd

� qd
qf

� � lr sinu
4pB?

:

ð10:16Þ
Therefore, for a phase increment Df, we have

Dz ¼ � lr sinu
4pB?

Df: ð10:17Þ

Figure 10.3 (a) An ERS-2 SAR multi-look image; and (b) the SAR interferogram of the same scene in which the
fringes, in 2p cycles, are like contours showing the topography
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For one fringe cycle, Df¼ 2p, in this case,

Dz2p ¼ � lr sinu
2B?

: ð10:18Þ

The numerator in (10.18) is constant and thus the
greater the value of B?, the less the elevation
increment with one cycle of 2p and the higher the
DEM resolution. Given

r ¼ h

cosu

we can rewrite (10.18) as

Dz2p ¼ � lh tanu
2B?

: ð10:19Þ

In the case of the ENVISAT SAR, where l ¼
0.056m, h¼ 800 000m, look angle 23� and B?¼
300m, we then have |Dz2p|¼ 31.7m. We find that
the elevation resolution of InSAR is not very high
even with a 300m perpendicular baseline. This is
because the translation from phase difference to
elevation is indirect, according to the geometry
shown in Figure 10.2.

As hinted in Equation (10.19), B? enables obser-
vation of the same ground position of height from
different viewangles. This is the key factor forDEM
generation using InSAR and it is similar to DEM
generation from a pair of stereo images, although it
is based on quite different principles. As a simple
demonstration, consider a special case, B?¼ 0,
where a point is observed from two SAR images
at the same view angle, as shown in Figure 10.4.
Then d¼B//¼B is a constant which is independent
of the view angle u. In this unique case, the inter-
ferogram is a constant invariant with respect to
position and it therefore contains no topographic
information. An SAR fringe pair with very smallB?

is therefore insensitive to elevation. On the
other hand, a very large B?, though more sensitive
to elevation, will significantly reduce the coherence
level, and thus the SNR of the interferogram,
because the two radar beams become less
parallel. Most InSAR applications require the
ratio B?/r to be less than 1/1000. Translating this
to ERS-2 and ENVISATwith an orbital altitude of
about 800 km and a nominal view angle of 23�, the
desirable B? for effective InSAR should be less
than 1000m.

10.3 Differential InSAR and
deformation measurement

Satellite differential InSAR (DInSAR) is an effec-
tive tool for the measurement of terrain deforma-
tion as caused by earthquakes, subsidence, glacial
motion and volcanic deflation. DInSAR is based
on a repeat-pass spaceborne radar interferometer
configuration. As shown in Figure 10.5, if the
terrain is deformed by an earthquake on a fault,
then the deformation is translated directly as the
phase difference between two SAR observations,
made before and after the event. If the satellite
orbit is precisely controlled to make the two repeat
observations from exactly the same position, or at
least B?¼ 0, as illustrated in Figure 10.4, the
phase difference measured from InSAR is entirely
produced by the deformation in the slant range

A2 

A1 

z

r
h

//BB

Figure 10.4 A special case of InSAR for B?¼ 0
Figure 10.5 Illustration of phase shift induced from
terrain deformation, measured by differential InSAR
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direction. This ideal zero-baseline case is, how-
ever, unlikely to be the real situation in most Earth
observation satellites with SAR sensor systems. In
general, the across-event SAR observations are
made with a baseline B? 6¼ 0, and as a result the
phase difference caused by terrain deformation is
jumbled with the phase difference caused by the
topography. Logically, the difference between
the interferogram generated from two SAR
observations before terrain deformation and that
from two SAR observations across the deforma-
tion event should cancel out the topography and
retain the phase difference representing only ter-
rain deformation. Topographic cancellation can be
achieved from the original or from the unwrapped
interferograms. The results of DInSAR can then
be presented either as differential interferograms
or deformation maps (unwrapped differential
interferograms). For simplicity in describing the
concepts of DInSAR processing, the phase differ-
ence in the following discussion refers to the true
phase difference, not the 2p wrapped principal
phase value.

With two pre-event SAR images and one post-
event image (within the feasible baseline range), a
pre-event and a cross-event fringe pair can be
formulated, so a differential interferogram can
be directly derived. The DInSAR formula, after
correction for flattening of the Earth’s curvature,
is as follows (Zebker et al., 1994a):

df ¼ f2flat �
B2?
B1?

f1flat ¼
4p
l
D ð10:20Þ

fflat ¼
4p
l
ðu� u0Þ �B? ð10:21Þ

where u0 is the look angle to each point in the image
assuming zero local elevation on the ground (the
reference ellipsoid of the Earth); f1flat and f2flat

are the unwrapped pre-event and cross-event inter-
ferograms after the flattening correction for the
Earth’s curvature; and D represents the possible
displacement of the land surface.

The ratio between the perpendicular baselines of
the two fringe pairs is necessary because the same
2p phase difference represents different elevations
depending on B? according to formula (10.19).

The operation cancels out the stable topography
and reveals the geometric deformation of the land

surface. Formula (10.20) indicates that the defor-
mation D is directly proportional to the differential
phase difference df, thus DInSAR can provide
measurements of terrain deformation at better than
half the wavelength of SAR at millimetre accuracy.
For instance, the wavelength of the C-band SAR
onboard ENVISAT is 56mm and thus 28mm
deformation along the slant range will be translated
to 2p phase difference in a cross-event C-band SAR
interferogram.

As an alternative approach, if a high-quality
DEM is available for an area under investigation,
f1 can be generated from the DEM with an artifi-
cially given baseline equal to the baseline of
the across-event fringe pair and simulated radar
imaging geometry (Massonnet et al., 1993, 1994;
Massonnet, Briole and Arnaud, 1995). In this case,
DInSAR is a simple difference between the cross-
event SAR interferogram f2 and the simulated
interferogram of topography f1sim:

df ¼ f2 �f1sim ¼ 4p
l
D ð10:22Þ

The advantages of using a DEM to generatef1sim

are that it is not restricted by the availability of
suitable SAR fringe pairs and that the quality of
f1sim is guaranteed without the need for unwrap-
ping. As further discussed in the next section, the
quality of an SAR interferogram is often signifi-
cantly degraded by decoherence factors and, as a
result, unwrapping will unavoidably introduce
errors.

Obviously, one crucial condition for DInSAR
is that the satellite position for SAR imaging is
controlled to a high precision and is frequently
recorded to ensure accurate baseline calculation.
If the satellite can be controlled to repeat exactly,
providing an identical orbit, then the so-called zero-
baseline InSAR is achieved, which, without topo-
graphic information, is in fact the same as a
DInSAR measurement of deformation directly. In
many applications, it is not always necessary to go
through this rather complicated process to generate
differential SAR interferograms. Since the fringe
patterns induced from topography and from
terrain deformation are based on different princi-
ples, they are spatially very different and can
often be visually separated for qualitative analysis.
Also, since the terrain-deformation-induced fringes
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are a direct translation from deformation to
phase difference, they are often localized and show
significantly higher density than the topographic
fringes, especially in an interferogram with a
short B?. For a flat area without noticeable topo-
graphic relief, any obvious fringe patterns in a
cross-event SAR interferogram should be the result
of terrain deformation. In such cases, we can use
InSAR for the purpose of DInSAR with great
simplicity.

Figure 10.6 is an ENVISATASAR interferogram
(draped over a Landsat-7 ETMþ true colour com-
posite image) showing the terrain deformation
caused by an earthquake of moment magnitude
7.3 which occurred in the Siberian Altai, on 27
September 2003. The high-quality fringes are
produced mainly in the basin where elevation
varies gently over a range of less than 250m. With
B?¼ 168m for this fringe pair, of wavelength l¼
56mm, orbital attitude h¼ 800 km and look angle
u¼ 23�, we can calculate from Equation (10.19)
that each 2p phase shift represents 56.6m elevation.
Thus the 250m elevation range translates to no
more than five 2p fringes. The dense fringe patterns
in this interferogram are dominantly produced by
the earthquake deformation.

Certainly, when we say that DInSAR can mea-
sure deformation on amillimetre scale, wemean the
average deformation in the SAR slant range direc-
tion in the image pixel, which is about 25m spatial
resolution for ERS InSAR.

10.4 Multi-temporal coherence
image and random change
detection

So far the application of repeat-pass InSAR is
considerably restricted from any areas subject to
continuous random changes such as in dense vege-
tation cover. To generate a meaningful interfero-
gram, two SAR images must be highly coherent or
have high coherence. The InSAR phase coherence
is a measurement of local spatial correlation
between two SAR images. Any random changes to
the scatterers on the land surface between the two
acquisitions will result in irregular variations in
phase which will reduce the coherence. In particu-
lar, the random variation exceeding half a wave-
length of the radar beam in the slant range direction
will cause a total loss of coherence.

As shown in Figure 10.7, the terrain deformation
caused by earthquakes and so on typically comprises
a block 3D shift which largely does not alter the
surface scatterers randomly and, therefore, as long as
there are no other factors causing randomchanges on
the land surface, the phases of return SAR signals
from ground scatterers will all shift in the same way
as the block movement; this collectively coherent
phase shifting can be recorded as a high-quality SAR
interferogram giving quantitative measurements
of the deformation (Figure 10.7d). If, however,
the land surface is subject to random changes, the

Figure 10.6 An ENVISAT interferogram draped over an ETM true colour composite showing the terrain deformation
produced by an earthquake of moment magnitude 7.3 which occurred in the Siberian Altai on 27 September 2003
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phases of scatterers are altered randomly andwill no
longer be collectively coherent; the coherence is
consequently lost and the interferogram becomes
chaotic (Figure 10.7e).

Any land surface is subject to continuous ran-
dom change caused by many decorrelation factors
such as vegetation growth, wind-blown sands and
erosion. Since random changes on a land surface
are cumulative, an SAR fringe pair with a long
temporal separation is likely to have low coherence
and cannot therefore be used to produce a high-
quality interferogram. The low coherence means a
lack of interferometric information but this may
still be useful in indicating random changes on
the land surface, although it cannot give direct

information of the nature of those changes. With
the development of the InSAR technique and
applications, the value of multi-temporal coher-
ence imagery as an information source for surface
change detection has been widely recognized
and many successful application cases have
been reported (Corr and Whitehouse, 1996;
Ichoku et al., 1998; Liu et al., 1997a; Liu, Lee
and Pearson, 1999; Lee and Liu, 1999; Liu et al.,
2001; Liu et al., 2004).

Phase coherence of two SLC SAR images repre-
sents the local correlation of the radar reflection
characteristics of the surface target between two
observations. This can be estimated by ensemble
averaging N neighbouring pixels of complex SAR

Figure 10.7 Illustration of the effects of terrain deformation and random surface changes on interferograms. The
small arrows in diagrams (a) to (c) represent the phase angles of return SAR signals from scatterers on the land
surface. The block movement along a fault between SAR acquisitions (a) and (b) results in a coherent phase shift in
the same direction as the motion between the two blocks (d), but there are no random phase shifts within each
of the faulting blocks and thus a good interferogram (f) is produced which records the terrain deformation. In the
case where random changes are involved in addition to the faulting motion, as shown between (a) and (c), random
phase shifts which are not related to the fault movement are introduced and the return signal phases between the
two acquisitions are no longer coherent (e). As a result, the interferogram (g) is chaotic and does not show any
meaningful interferometric patterns
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data as

r ¼
PN
l¼1

z1lz
*
2l

����
����

PN
l¼1

z1lz*1l
PN
l¼1

z2lz*2l

� �1=2
ð10:23Þ

where r is the coherence magnitude estimate, z1, z2
the complex values of the two SAR images, and *
the complex conjugate.

Obviously, the value range of r is [0, 1], going
from totally incoherent to completely coherent.

Besides providing a quality assessment for SAR
interferograms, the interferometric coherence tech-
nique has been widely used for the detection of
surface random change phenomena such as rapid
erosion, human-activity-induced land disturbance
and assessment of earthquake destruction. Fig-
ure 10.8 presents an application example showing
an ERS-2 SAR multi-look image (a) of an area in
the Sahara Desert and a coherence image (b) of the
area derived from two SAR acquisitions with a
temporal separation of 350 days. The coherence
image reveals a mesh of dark straight lines
which represent seismic survey lines made during
the 350 days between the two SAR acquisitions,

while the multi-look image of the second acquisi-
tion of this InSAR pair shows nothing. For the
seismic survey, trenches were dug to place the
seismic sensors and, since then, the land surface
has recovered. Since the land surface appears as
before, we can see no sign of these seismic survey
lines in the multi-look image. The land surface
materials along the survey lines are, however,
significantly disturbed and as a result their scatter-
ing properties are altered randomly causing the loss
of coherence.

10.5 Spatial decorrelation and ratio
coherence technique

Apart from temporal random land surface changes
during the period between two SAR acquisitions,
there are other factors which can cause the loss of
coherence in InSAR coherence images. Among
these decorrelation factors, baseline and topograph-
ic factors are often called spatial decorrelation as
they are relevant to the geometric relations of sensor
position and target distribution. In terrain with a
considerable relief, topographic decorrelation due
to slope angle is often the dominant decorrelation

Figure 10.8 An ERS SAR multi-look image (a) and an InSAR coherence image generated from two SAR acquisitions
with 350 days of temporal separation (b) of an area in the Sahara Desert. The coherence image reveals a mesh of seismic
survey lines made during the period between the two acquisitions. These seismic lines are not shown in the multi-look
image formed from the second acquisition of this InSAR pair
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factor. This type of decorrelation is an intrinsic
property of a side-looking and ranging SAR system.
The decorrelation is overwhelming, particularly on
a foreshortened or layover slope where the coher-
ence drops dramatically towards zero. The low-
coherence features of such slopes can easily be
misinterpreted in the coherence imagery as an
unstable land surface subject to rapid random
change, even on a highly stable slope. It is important
to separate topographic spatial decorrelation from
the temporal decorrelation to achieve effective
detection of random land surface changes.

Phase coherence decreases with the increase of
B? as characterized in the formula (Zebker and
Villasenor, 1992)

rspatial ¼ 1� 2 cos bRy

lr
B? ð10:24Þ

where b is the incidence angle, Ry the ground range
resolution, l the radar wavelength and r the distance
from the radar sensor to the centre of a resolution
element (slant range).

In general, SAR fringe pairs with small B? are
desirable for coherence image applications. From
formula (10.24) we can further prove that the influ-
ence of spatial decorrelation varies with topography.

Let u0 represent the nominal look angle of the
SAR (23� for ERS-2) and a the local terrain slope
measured upwards from the horizon away from
the radar direction; then b¼ u0�a (Figure 10.9a).
The ground range resolution is thus a function of the
local terrain slope:

Ry ¼ c

2Bwjsinðu0 �aÞj ð10:25Þ

where c is the speed of light and Bw the frequency
bandwidth of the transmitted chirp signal.

The ground range resolution Ry increases rapidly
when the surface is nearly orthogonal to the radar
beam and becomes infinite if the terrain slope is
equal to the nominal look angle (i.e. a¼ u0)
(Figure 10.9b). Note that Ry is practically limited
to a finite value because the terrain is not an infinite
plane. The effect of a large value of Ry on the
decorrelation is, however, significant in the case of
the surface slope facing the radar. Substitut-
ing (10.25) into (10.24) results in a modified spatial
decorrelation expression, as a function of perpen-
dicular baseline and terrain slope (topography) (Lee
and Liu, 2001):

rspatial ¼ 1�AB?jcotðu0 �aÞj ð10:26Þ
where A¼ c/lrBw, a constant for the SAR system.

This spatial decorrelation function describes the
behaviour of topographic decorrelation as well as
baseline decorrelation. For a given baseline, the
correlation decreases as the local terrain slope ap-
proaches the value of the nominal incidence angle,
while the increase in baseline will speed up deterio-
ration of the correlation.

We now introduce a method of ratio coherence
for analysing and separating spatial and temporal
decorrelation phenomena. The approximate total
observed correlation of the returned radar signals
can be generalized as a product of temporal and
spatial correlation:

r ¼ rtemporal � rspatial
¼ rtmeporal � ð1�AB?jcotðu0 �aÞjÞ: ð10:27Þ

Figure 10.9 (a) The relationship between nominal radar look angle u0, radar incident angleb and terrain slope angle
a; and (b) given the nominal radar look angle u0, the incident angleb and the ground range resolution Ry are decided by
the terrain slope anglea. When the slope is perpendicular to the incident radar beam orb¼ 0, the range resolution Ry is
indefinite
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Consider three SAR observations named 1, 2 and
3 in time sequence. A ratio coherence image can
then be established by dividing a coherence image
with long temporal separation by another with
relatively short temporal separation as

r13

r12
¼ r13temporal

r12temporal

� r
13
spatial

r12spatial

¼ r13temporal

r12temporal

� 1�AB13
? jcotðu0 �aÞj

1�AB12
? jcotðu0 �aÞj

ð10:28Þ

where the superscripts represent the image pair for
each coherence image.

Alternatively, we can state that the total ratio of
coherence consists of a temporal ratio part and a
spatial ratio part as

h ¼ htemporal �hspatial: ð10:29Þ
From the above formulae, we have the following

observations.

1. Obviously, the temporal ratio part always satis-
fies htemporal� 1 because the temporal change is
a cumulative process and r13temporal � r12temporal

is always true as the temporal separations
DT13 >DT12.

2. If thebaselinesareB13
? 	 B12

? , thenr13spatial � r12spatial
and thus the spatial ratio hspatial� 1 and the total
ratio h� 1 for all slopes.

3. For the case of B13
? <B12

? , then r13spatial > r12spatial
and the spatial ratio hspatial > 1 in general.
The difference between r13spatial and r12spatial will
become significant when the terrain slope is
nearly normal to the incident radar beam (i.e
the slope angle approaches the radar look angle)
and the spatial ratio will be abnormally high
(hspatial
 1) producing high total ratio coher-
ence h
 1. However, for the areas other than
direct radar-facing slopes, we would have
r13spatial � r12spatial and hspatial� 1.

Item 3 above specifies the feasible working con-
dition for the ratio coherence:

h ¼ Coherence of large DT and short B?
Coherence of small DT and long B?

:

ð10:30Þ

The formula (10.30) specifies a ratio coherence
image in which the numerator coherence image has
a longer temporal separation and shorter baseline
than the denominator coherence image. This ratio
coherence image provides effective identification
and separation of decoherence features sourced
from spatial and temporal decorrelation, as itemized
below (Figure 10.10):

1. Areas of total topographic decorrelation along
the radar-facing slopes are highlighted as

Figure 10.10 Generation of a ratio coherence image. (a) Coh1: Coherence image of 35 days and B?¼ 263m (short
temporal separation with long baseline). (b) Coh2: Coherence image of 350 days and B?¼ 106 m (long temporal
separation with short baseline). (c) The ratio coherence image Coh2/Coh1: bright features represent topographic
decorrelation on steep slopes facing the radar illumination, while dark features are detected random changes over a
largely stable background in grey
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abnormally bright features because hspatial
 1
and then h
 1.

2. The temporal decorrelation of random changes
on the land surface appears as dark features
because htemporal < 1 and hspatial� 1 for areas
not subject to severe topographic decorrelation
and thus h < 1.

3. The stable areas, not subject to either temporal or
spatial decorrelation, appear as a grey back-
ground where h� 1 as htemporal� 1 and
hspatial� 1.

10.6 Fringe smoothing filter

A repeat-pass SAR interferogram is often noisy
because of reduced coherence caused by temporal
and spatial decorrelation, as shown in Figure 10.11a.
The quality of an interferogram can be considerably
improved ifwe can reducenoise by smoothing. Since
the interferogram f is 2p wrapped (Figure 10.12a),
ordinary smoothing filters are not directly applicable
to the reduction of noise in such discontinuous
periodic data. Here we introduce a simple phase
fringe filtering technique (Wang, Prinet and Ma,
2001) which has the following steps:

1. For the interferogram f, sinf and cosf are
continuous functions of f, as shown in
Figure 10.12b. Thus we convert the original
interferogram into images of sinf and cosf.
All the trigonometric functions are wrapped in a

cycle of p. Within the 2p cycle off, we can only
retrieve angles in the range of [0, p/2] and [p, 3p/
2] from sinf, and [0, p] from cosf. The combi-
nation of sinf and cosf, through a tangent
function, allows us to retrieve the phase angle
f in its original 2p cycle.

2. A smoothing filter can then be applied to these
two images of sinf and cosf.

3. Retrieval of the filtered interferogram �f from the
smoothing filtered sinf and cosf is performed
by

�f ¼ arctan
sinf

cosf

� �
:

Here the signs of sinf and cosf dictate the
quadrant of the smoothed phase angle �f.
The smoothed phase angle �f is within 0–p/2 for
(þ , þ ); p/2–p for (�, þ ); p–3p/2 for (�,�);
and 3p/2–2p for (þ ,�).

The window size of the smoothing filter used
must be small comparedwith the half wavelength of
sinf and cosf in the image of the interferogram.
Figure 10.11b is a filtered interferogram with a
5� 5 mean filter showing significantly reduced
noise.

10.7 Summary

Several InSAR techniques are introduced in this
chapter. It is very important to notice that different

Figure 10.11 Illustration of fringe smoothing filtering: (a) the original interferogram is quite noisy because of
temporal and spatial decorrelation; and (b) after fringe smoothing filtering, the interferogram is cleaner and clearer
than the original
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techniques apply to different applications, as out-
lined below:

. InSAR interferogram is used for DEM generation:
The single pass configuration of InSAR is pre-
ferred for the complete elimination of temporal
decorrelation and to ensure a high-quality interfer-
ogram. The wider the perpendicular baseline, the
higher the elevation resolution. Awider B? intro-
duces more severe spatial decorrelation which
degrades the quality of the interferogram and then
the DEM. Usually B? of a few tens to a few
hundreds of metres is used. The relationship be-
tween InSAR and topography is established by the
geometry of the slightly differing view angles
between the two observations. The elevation reso-
lution of InSAR is, therefore, for C-band SAR, for
example, no better than 10m in general.

. Differential InSAR (DInSAR) is used for the
measurement of terrain deformation: This uses
repeat-pass InSAR with at least one pair of cross-
deformation event SAR acquisitions. The differ-
ential phase difference is directly translated
from the deformation magnitude measured at
2p for half radar wavelength (28mm for C-band
SAR). The technique is therefore very sensitive to
terrain deformation and can achieve millimetre-
scale accuracies. This millimetre-scale accuracy
is, however, an average deformation over an

image pixel which is, for ERS InSAR, about
25m. A short B? is preferred for DInSAR to
minimize fringes of topography. Ideally, a zero-
baseline InSAR configuration would replace
DInSAR.

. InSAR coherence technique is used for random
change detection: It is very important to notice
that this technique is for detection rather than
measurement. A coherence technique must be
based on repeat-pass InSAR. The random land
surface changes are cumulativewith time and this
reduces coherence in a coherence image derived
from two SAR SLC images with temporal sepa-
ration and which can then be detected as low-
coherence features. As coherence is affected by
both temporal and spatial (topographic) decorr-
elation, a short B? is preferred to minimize the
spatial decorrelation, thus to achieve effective
temporal change detection.

. Ratio coherence technique is developed to sepa-
rate spatial and temporal decorrelation: This
technique is defined as the ratio of a coherence
imagewith long temporal separation and shortB?
divided by a coherence imagewith short temporal
separation and long B?. Such a ratio coherence
image presents spatial decorrelation in bright
tones and temporal decorrelation of random
changes in dark tones on a grey background
representing the stable land surface.

Figure 10.12 (a) An interferogram f is a discontinuous periodic function in the 2p cycle; and (b) functions of sinf
and cos f are also 2p periodic but are continuous
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Questions

10.1 Describe, using diagrams, the basic configu-
ration of single path and repeat-path InSAR.

10.2 Use a diagram to explain the principle of
InSAR.

10.3 What are the differences between InSAR,
DInSAR and coherence techniques, and what
are their main applications?

10.4 In comparison with photogrammetric meth-
ods using stereo imagery, discuss the advan-
tages and disadvantages of using InSAR for
DEM generation.

10.5 Select the only correct statement from the four
below and explain the reasons for your choice:
(a) The InSAR technique can be used to

produce DEMs of centimetre-level accu-
racy of elevation.

(b) The differential InSAR technique can be
used to produce DEMs of centimetre-
level accuracy of elevation.

(c) The differential InSAR technique can de-
tect up to centimetre-level (half radarwave-
length) random changes of land surface.

(d) An SAR coherence image can detect up to
centimetre-level (half radar wavelength)
random changes of land surface.

10.6 Describe the ratio coherence technique and
explain the conditions of baseline and tempo-
ral separation necessary for this technique to
be effective.

10.7 Why can ordinary smoothing filters not be
applied directly to an interferogram image?
Describe the procedure of fringe smoothing
filtering.
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11
Geographical Information Systems

11.1 Introduction

The geographical information system or GIS needs
very little introduction these days since it is a
massively expanding and developing technology,
and it is certainly a mature one today. There are
many aspects ofGISwhichwe now take for granted,
such as online route finding tools which use
postcode gazetteers to identify geographic features
and addresses, or in-car navigation systems.
The appearance of the likes of Google Earth
has transformed people’s perception of their
environment and, possibly, of what we geospatial
scientists do for a living. Essentially, people are
thinking far more geographically than ever before.
GIS is very soon to become part of the GCSE school
curriculum in the United Kingdom, and this will
help to increase awareness at a much earlier age. It
should not be too long before we see a marked
increase in the number of people embarking on
geospatial careers, or perhaps just taking geospatial
information even more for granted.

Software tools become more sophisticated and
easier to use, as well as more effective and faster.
Many processes that can be done now at the simple
click of a button, only a few years ago would have
taken a little while to set up and execute. This is of
course advantageous but there is a temptation to
trivializewhat is being achieved. Underneath all the
many impressive things that software tools can now
do, on your desk, in your car, on the Internet, in

providing you with vast quantities of information,
are still the same simple operations and processes
and they are no less important. The data they access
are, however, more voluminous, more efficiently
organized, more effectively processed and more
widely available. There is perhaps also a danger in
not being aware of what happens behind that simple
button click, of misunderstanding or misusing the
technology, or at least of not being aware of a
mistake. In this respect, the roles of human critique
and of simple visualization becomemore important,
not less, since a critical perspective is essential to
ensure the quality or at least the reliability and
relevance of the result.

One of the principal tools in the hands of remote
sensing scientists is image processing. It is not the
only tool but is onewhich fundamental at some stage
ofa remote sensing applicationproject of somekind,
especially since it is a vital contributor to the visual-
ization of remotely sensed imagery. Visualization is
also avital part of anydigital analysis inGIS;written
reports are important but rather impotentwithout the
ability actually to see the results. A great many
image processing procedures lie at the heart of GIS,
mainly in raster GIS of course, but there are also
parallels in vector GIS. We have tried to point out
the links between the various aspects of GIS
described here and their relevant image processing
counterparts (described in Part One) wherever
possible, as well as linking to case studies (in Part
Three) in which the techniques have been applied.
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There are many excellent and comprehensive
published texts on GIS, as listed in the general
references, so this part of our book is not intended
as a general GIS textbook but aims to summarize
the techniques and principles which are useful in
remote sensing applications within or connected
with ‘geoscientific’ fields.We refer here to themany
preparatory tasks as well as to the spatial analysis of
datawithin this geoscientific context. Of course, that
does not imply that the tasks dealt with here are the
exclusive domain of the geosciences, but we stress
that some of themore advanced tasks and techniques
are perhaps (arguably) not generally within the
scope ofGIS use by the general geographical public.

This seems a convenient point to clarify our
definition of the acronym ‘GIS’ in this book. In
some instances it is taken to stand for Geographic
Information Systems or Geographical Information
Science and, in other instances, Geographic Infor-
mation Systems and Science; none of these is
incorrect as such, but without feeling it necessary
tomake thewhole thing soundmore impressive than
it already is, and to make things simple, we will
stick with Geographical Information System. The
descriptions of processes and procedures in this part
of the book are largely generic and do not therefore
represent the practice of any particular software
suite or the theory of any particular individual, but
where certain aspects are relevant to specific GIS
software packages or published research, these are
stated.

11.2 Software tools

In the light of the conceptual overlap that is the
subject of this book, it should also be understood
that there are a greatmany other software tools, used
in related disciplines, which have elements in
common but do not generally qualify as ‘GIS’. Such
tools involve spatially referenced information and
perform very similar operations on raster and vector
objects but we tend not to refer to them in the same
breath, perhaps because generally speaking they are
in use within far more specific application areas;
one of the great strengths of GIS is its status as a
general purpose tool.

Such software suites include ER Mapper (a so-
phisticated and totally transparent image processing

engine); Geosoft (a raster processing suite contain-
ing tools for the processing of geophysical data, and
the production of maps, used largely by the mining/
exploration industry); Micromine (a vector han-
dling package for managing and displaying sub-
surface and surface point geochemical and borehole
data, again used primarily by the mining/explora-
tion industry); Petrel and Landmark (suites used
almost entirely by the petroleum industry, for the
processing, analysis and visualization of surface
and sub-surface raster and vector data); and Surfer
(a sophisticated and generic toolset for gridding of
vector data to produce raster grids). There are many
more.

One of the limitations of GIS in geosciences lies
in the fundamental concept of the layer. The Earth’s
surface is a conceptual boundary for GIS: i.e.,
we cannot adequately describe sub-surface objects
or the relationships between them. Sub-surface
geological phenomena are, for most purposes,
excluded from GIS except in that they exist as
discrete features. For example, sub-surface horizon
maps can be treated like any other spatial data layer,
but features which intersect one layer cannot be
made to intersect another in a geologically mean-
ingful way. This is partly because the separation
between layers is an arbitrary distance and is not
deemed to be significant for the purposes of most
GIS operations and procedures. Fortunately,
however, there are other software suites which do
allow for such concepts and provide more complete
3D functionality for the geosciences.

We have provided a list of GIS software packages
and the URLs of their websites in Appendix B; the
list includes both proprietary and shareware tools.

11.3 GIS, cartography and thematic
mapping

Is there a difference between a GIS and a conven-
tional cartographic map? A map is of course a GIS
in itself, i.e. it is an analogue spatial database which
requires perception and interpretation to extract the
embedded information. Once on paper, however, it
is fixed and cannot be modified. AGIS display of a
map, on the other hand, is inherently flexible.
Unlike the conventional paper map, it does not
require every piece of information to be visible
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at the same time. It can also change the depiction
of a particular object according to the value of
one of its attributes. Let’s not forget, of course, that
the cartographic map is still also a vital analogue
product of our digital analysis!

This ability to display information selectively
according to a particular objective is known as
thematic mapping. Thematic maps are common-
place in atlases, textbooks and other published
journal articles; standard topographic maps for
instance are thematic. Thematic maps can be divid-
ed into two groups: qualitative and quantitative.
Qualitative maps show the location or distribution
of nominal data and in many respects qualitative
thematic maps are similar to general purpose
maps, except that they focus on specific themes.
Quantitative maps show the variations or changing
magnitudes of spatial phenomenon in different
places; and quantitative maps illustrate data that
can be processed into ordinal, interval or ratio
scales. The thematic map is therefore a very basic
component and product of remote sensing applica-
tions that involve image processing and/or GIS. The
case studies described in Part Three all involve
production of some kind of thematic product, either
as the end result or as an intermediary stage of a
broader analysis.

11.4 Standards, interoperability
and metadata

With data and software growing in volume and
capability every day, there follows the increasing
need to be transparent and rigorous in the recording
of quality, provenance and validity, as matters of
best practice in GIS. The Open Geospatial Consor-
tium (OGC) has been formed in relatively recent
years as an internationally coordinated volunteer
organization (in which there are several hundred
member companies, agencies and universities)
which is responsible for the driving of standards
in interoperability and quality within the geospatial
community (in its broadest sense). A wealth of
information can be found on the OGC website,
describing OpenGIS technical standards and speci-
fications, and best practices for data, metadata and
procedures (www.opengeospatial.org/standards/)
within all aspects of GIS.

Many proprietary software suites now incorpo-
rate open application programming interfaces
to allow users to customize and develop tools
for their working environment, both locally and
for communication via the wired and wireless
Internet. The current trend in software develop-
ment in a growing international market is towards
scalable and modular products, so allowing users
to customize the tools according to their own
needs. A parallel trend is in the sharing of tech-
nological development, with highly specialized
third-partymodules fromone product being incorpo-
rated (as ‘plug-ins’, for instance) into the main suite
of another; GIS has now entered the world of ‘plug
and play’!

The improvementofinteroperabilityandstandards
is one of the great ‘reliefs’ as GIS comes of age.
Moving information, integrating it, sharing it and
recording its provenance and quality demand open-
ness about its format and structure, how itwascreated
andwhathas beendone to it subsequently.Being able
to import data is vital, but so too is the ability toexport
andsharedata.Thankfully, thereisfarlessdifficultyin
satisfying these needs now and the trend in interoper-
ability is ongoing and entirely positive.

Metadata describe many aspects of geospatial
information, especially the content, quality and
provenance of the data. This information is vital
to the understanding of the information by others
whomay use the data. Themain uses are for general
database organization and for digital catalogues and
Internet servers. Such information is usually stored
in a standard form, such as .xml, and so can
be created or edited using a standard text editor
program. The recording of metadata seems such an
easy and trivial thing that it is often overlooked or
neglected, but with the growing volumes of data at
our fingertips it becomes more and more of a
necessity. There are several basic categories of
metadata which should be recorded, as follows:

. General identification – the name and creator of
the data, the general location of the data, date
of creation and any restrictions on use.

. Data quality – the general reliability and quality,
stated accuracy levels, level of completeness and
consistency, and the source data.

. Data organization – the data model used to create
and encode the information.
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. Spatial referencing – the coordinate system used
to georeference the data (if any), geographic
datums used and any transformation parameters
(relative to global standards) which may be
specific to the geographic region.

. Attribute information – what kind of descriptive
attribute system is used.

. Distribution – where the data were created,
formats and other media types available, online
availability, restrictions and costs.

. Metadata referencing – when, where and by
whom the data (and metadata) were compiled.

Metadata have an important part to play in a
world where digital analysis is commonplace and
digital data are growing in volume all the time. The
catch is that although metadata are very useful in
increasing understanding about and tracking the
provenance of data, they cannot prove the quality
or the trustworthiness of the data.

11.5 GIS and the Internet

With easy-to-useWeb browsers, GIS on the Internet
provides a much more dynamic tool than a static
map display. Web-enabled GIS brings interactive

query capabilities to a much wider audience.
It allows online data commerce and the retrieval
of data and specialized services from remote servers
(such as that of the Environmental Systems
Research Institute, Inc. (ESRI), the Geography
Network (www.geographynetwork.com).

The development of languages like GML, the
Geography Markup Language (an extension of
XML), VRML (superseded by X3D) and KML
(Keyhole Markup Language) also make GIS far
more accessible to the general, computer-literate
public. KML, for instance, is a file structure for the
storage and display of geographic data, such as
points, lines, polygons and images, in Web browser
applications such as Google Earth & Maps, MS
Virtual Earth, ArcGIS Explorer, Adobe Photoshop
and AutoCAD. It uses tags, attributes and nested
elements and in the samewayas standardHTMLand
XML files. KML files can be created in a simple text
editor or in one of many script editing applications.
More info can be found at www.opengeospatial.org/
standards/kml. Such a facility is especially useful
and relevant since it allows one to sharegeographical
information with other users via the Internet, and,
importantly, with other users who might not have
access to proprietaryGIS software, allowing them to
see the data in a geographical or map/image context.
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12
Data Models and Structures

12.1 Introducing spatial data
in representing geographic
features

Data that describe a part of the Earth’s surface or the
features found on it could be described as geograph-
ic or ‘spatial’ data. Such data include not only
cartographic and scientific data, but also photo-
graphs, videos, land records, travel information,
customer databases, property records, legal docu-
ments and so on. We also use the term ‘geographic
features’ or simply ‘features’ in reference to objects,
located at the surface of the Earth, whose positions
have beenmeasured and described. Featuresmay be
naturally occurring objects (rivers, vegetation), or
anthropogenic constructions (roads, pipelines,
buildings) and classifications (counties, land par-
cels, political divisions). Conventional cartographic
maps represent the real world using collections of
points, lines and areas, with additional textual in-
formation to describe the features. GIS constructs
maps in a similar way but the features appearing on
the map are stored as separate entities which have
other intelligence stored with them as ‘attributes’. It
is also worth noting that the terms ‘feature’ and
‘object’ are commonly used interchangeably; here
we have tried to stick to the term ‘feature’ when
referring to a discrete entity, usually in vector form,
but there are times when both terms are used for
clarity.

12.2 How are spatial data different
from other digital data?

There are four main aspects that qualify data as
being spatial. Firstly, spatial data incorporate an
explicit relationship between the geometric and
attribute aspects of the information represented, so
that both are always accessible. For instance, if
some features are highlighted on a map display,
the records containing the attributes of those fea-
tures can also be highlighted (automatically) in the
associated attribute table. If one or more of those
features are edited in some way in the map, those
changes are also automatically updated in the table,
and vice versa. There is therefore a dynamic link
between a feature’s geometry and its attributes.

Secondly, spatial data are referenced to known
locations on the Earth’s surface, i.e. they are
‘georeferenced’. To ensure that a location is accu-
rately recorded, spatial data must conform to a
coordinate system, a unit of measurement and a
map projection. When spatial data are displayed,
they have a specific scale just like on an analogue
map, but in GIS this scale can be modified.

Spatial data also tend to be categorized according
to the type of features they represent, i.e. they are
sometimes described as being ‘feature based’. For
example, area features are stored separately from
linear or point features and, in general, cannot
coexist in the same file structure.
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Lastly, spatial data are often organized into dif-
ferent ‘thematic’ layers, one for each set of features
or phenomena being recorded. For instance,
streams, roads, rail and land use would be stored
as separate ‘layers’, rather than as one large file. In
the same way, within each ‘theme’ there may be
sub-themes of the same feature type which can be
usefully grouped together, such as different classes
of roads and railways, all of which are linear
features that belong to the group ‘transport’. This
also makes data management, manipulation and
analysis rather more effective.

12.3 Attributes and measurement
scales

Descriptive attributes can also be described as being
spatial or non-spatial, though the difference be-
tween them may be subtle and ambiguous. The
nature of the information stored, or rather the scale
of measurement towhich they belong, dictates what
kind of processing or analysis can be performed
with them. Measurement scales describe how
values are assigned to features and objects repre-
sented in GIS. The type of scale chosen is dictated
by the intended use of the recorded information.
There are five scales commonly used in GIS, name-
ly nominal, ordinal, interval, ratio and cyclic, and
these are summarized, along with the numerical
operators appropriate to each case, in Table 12.1.

Nominal or categorical scales include numerical
values used to represent real-world objects or quali-
tative descriptions. They can be used as ‘pointers’ to
other descriptive (textual) information held in attri-
bute tables.Ordinal measures involve values ranked
or ordered according to a relative scale and which
generally have unequal intervals.Greater than or less
than operators are therefore useful but addition,
subtraction, multiplication and division are not ap-
propriate. One example is multi-element geochemi-
cal datawhere element concentrations are given on a
percentile scale and the intervals between classes are
not constant but arbitrary. Intervalmeasures are used
to denote quantities like distances or ranges but in
this case the intervals between the values are based
on equal or regular units. There is, however, no true
zero on an interval scale because the position of zero
depends on the units of the quantity being described.
Temperature scales are a good example because the
position of zero temperature depends on the units of
measurement, Fahrenheit orCelsius.Ratiomeasures
are similar to interval scales and are often used for
distances or quantities but the zero value represents
absolute zero, regardless of the units. Cyclic mea-
sures are a special case describing quantities which
aremeasured on regular scales butwhich are circular
or cyclic in their framework, such as aspect or
azimuth directions of slopes, or flow directions, both
of which are angular measures made with respect to
north. Appropriate operators are then any or all of
the previously mentioned arithmetic and average
operators.

Table 12.1 Measurement scales: methods for describing and operating on thematic information

Scale Operators Examples

Nominal ¼, 6¼ and mode Categorical (class) identifiers (e.g. 5¼ forest, 4¼ pasture,
9¼ urban)

Ordinal <, �, �, > and median Sequences of natural order, for example 1, 2, 3, 4
Interval þ , �, �, � and mean Ranges between, and sections along, distance measures, for

example temperature scales
Ratio All the above Distancemeasures, and subdivisions thereof, along lines and routes
Cyclic All the above Special measures, for example 360� bearings (azimuth), flow

directions
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12.4 Fundamental data structures

There are two basic types of structures used to
represent the features or objects, namely raster
and vector data, and as a consequence of this split,
there are different types of GIS software, and
different types of analysis, which have been de-
signed in such a way as to be effective with one or
the other type.

Rasters, images or grids consist of a regular array
of digital numbers or DNs, representing picture
elements or pixels (as explained more thoroughly
in Chapter 1) which are usually square. The basic
unit of such data is the pixel, or grid cell, such that
points, lines and areas are represented in raster form
as individual or groups of pixels.

Vector or discrete data store the geometric form
and location of a particular feature, along with its
attribute information describing what the feature
represents. Vector data typically resemble carto-
graphic data.

Points and pixels represent discrete geographic
features of no or limited area, or which are too small
to be depicted in any other way, such as well
locations, geochemical sample points, towns or
topographic spot heights. Lines are linear features
consisting of connected positions which do not in
themselves represent area, such as roads, rivers,
railways or elevation contours. Areas are closed
features that represent the shape, area and location
of homogeneous features such as countries, land
parcels, buildings, rock types or land-use catego-
ries. A surface describes a variable which has a
value for every position within the extent of the
dataset, such as elevation or rainfall intensity, and
implies data of a ‘continuous’ nature. Surfaces are
typically represented on conventional cartographic
maps as a series of isolines or contours; within GIS
there are other possibilities. Deciding how these
features should be stored in the database, and
represented on the map, depends on the nature
of that information and the work it will be required
to do.

The two most basic components of GIS are
therefore the pixel and the point. Every other, more
complex, structure in GIS stems from, and depends
on, one or other of these two basic structures. GIS
operations and spatial analysis can be performed on
either typeofdata, but that analysiswill beperformed

slightly differently as a result of this difference. We
will now describe these structures in turn.

12.5 Raster data

As described more fully in Chapter 1, an image is a
graphic representation or description of an object
that is typically produced by an optical or electronic
device. Some common examples of image data
include remotely sensed (satellite or airborne sur-
vey data), scanned data and digital photographs.

Raster data represent a regular grid or array of
digital numbers, or pixels, where each has a value
depending on how the imagewas captured and what
it represents. For example, if the image is a remotely
sensed satellite image, each pixel DN represents
reflectance from a finite portion of the Earth’s
surface; or, in the case of a scanned document, each
pixel represents a brightness value associated with a
particular point on the original document.

One important aspect of the raster data structure
is that no additional attribute information is stored
about the features it shows. Each raster grid there-
fore represents the variance of one attribute, such as
reflectance or emittance from the Earth’s surface as
in the case of remotely sensed data, so that a
separate raster is needed to represent each attribute
that is required. This means that image databases
require considerably more disk space than their
vector counterparts. In a large project this could
become a serious consideration. Any additional
attribute information must be stored in a separate
table which can then be linked or related to that
raster. For example, a raster in which integer values
between 1 and 4 are stored, representing land-use
categories, is linked with an attribute table which
relates these values to other descriptive textual
information, such as is illustrated in Figure 12.1.

If, for the same area, representation of other
variables such as soil type or rainfall intensity is
required, then these would have to be stored as
separate raster images.

12.5.1 Data quantization and storage

The range of values that can be stored by image
pixels depends on the quantization level of the
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data, i.e. the number of binary bits used to store
the data. The more the number of bits, the greater
the range of possible values. For example, if 1 bit
data are used, the number of unique values that
can be expressed is 21, or 2. With 8 bits, 28 or 256
unique values can be expressed; with 16 bits, that
number is 216 or 65 536 and so on. The most
common image data quantization formats are 8 bit
and 16 bit. Raster data can also be stored in ASCII
format but this is by far the least efficient way of
storing digital numbers and the file sizes get very
large indeed. The binary quantization level select-
ed depends partly on the type of data being
represented and what it is used for. For instance,
remotely sensed data are normally stored as 8 bit
integer data, allowing 256 grey levels of image
information to be stored, so that a three-band
colour composite image provides three times
255 levels (8 bits) and hence 24 bit colour is
produced. Digital elevation data, on the other
hand, may well represent height values which are
in excess of 256m above sea level. The use of
8 bit data would not allow this, so elevation data
are usually stored as 16 bit data, as integers or real
numbers (floating-point values).

Image data can be organized in a number of ways
and a number of standard formats are in common
use. In many cases, the image data file contains a
header record that stores information about the
image, such as the number of rows and columns
in the image, the number of bits per pixel and
the georeferencing information. Following the im-
age header is the actual pixel data for the image.
Some formats contain only a single raster image,
while others contain multiple images or bands. The
file extension used usually reveals the method of
storage of the image data, for example band inter-
leaved by line has the extension .bil, band inter-
leaved by pixel .bip and band sequential .bsq.

The main issue in connection with raster data
storage is the disk space potentially required. With
increasing availability of data, increasingly high
resolution and increasing speed and computing
power, so the capacity (and desire) to process large
data volumes grows. In parallel with this has been
the need to develop better methods of storage and
compression. The goal of raster compression is then
to reduce the amount of disk space consumed by the
data file while retaining the maximum data quality.
Newly developed image compression methods in-
cludewavelet transforms, which are produced using
an algorithm based on multi-resolution analysis.
Such methods are much less ‘lossy’ than block-
based (discrete cosine transformation) compression
techniques such as JPEG. The advantage of wavelet
compression is that it analyses the whole image and
allows high compression ratios while maintaining
good image quality and without distorting image
histograms. These techniques are essential if large
volumes of rawdata are to be served via the Internet/
intranets. The most well known include the follow-
ing and useful White Papers can be found on the
OGC and relevant company websites:

. JPEG2000, a new standard in image coding, uses
bi-orthogonal wavelet compression. It produces
better compression ratios than its predecessor,
JPEG, and is almost ‘lossless’.

. ECW or Enhanced Compressed Wavelet
(copyright ER Mapping Ltd) uses multiple scale
and resolution levels to compress imagery, while
maintaining a level of quality close to the original
image. Compression ratios of between 10 : 1 to
20 : 1 (panchromatic images) and 30 : 1 to 50 : 1
(colour images) are possible.

. MrSID or Multi-resolution Seamless Image
Database (developed by Los Alamos National
Laboratory and now marketed by LizardTech

Figure 12.1 A simple raster land-use map with other attributes stored in an associated table
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Corporation) uses an algorithm very similar to
ECW, with similar compression ratios and with
similarly ‘lossless’ results, for serving over the
Internet.

12.5.2 Spatial variability

The raster data model can represent discrete point,
line and area features but is limited by the size of the
pixel and by its regular grid-form nature. A point’s
value would be assigned to and represented by the
nearest pixel; similarly, a linear feature would be
represented by a series of connected pixels; and an
area would be shown as a group of connected pixels
thatmost closely resembles the shape of that area, as
illustrated in Figure 12.2.

The kind of information to be stored should be
considered before choosing a model for storing it.
Clearly points, lines and areas can be represented
but since the raster grid is by definition contiguous,
i.e. every possible position within the area of inter-
est must be represented by a pixel value, we are
forced to store values for all the areas not repre-
sented by significant features. So in the case of the
land-use map in Figure 12.1, the information of
value occurs at the boundaries between the classes.
The distribution of scrubland for instance is such
that it covers the area taken by 12 pixels, thus its
value (4 in this case) is stored 12 times. There is no
further variation within this area and a similar
situation exists for the other three classes. Such
information can be considered to be of low spatial
variability and, if represented by a raster, means that
many duplicate and so insignificant values are
stored in addition to the important ones where the

class boundaries occur; this constitutes data redun-
dancy and represents a waste of disk space. In such
cases, it would be better to choose the vector model
of storage.

Since the raster model enforces the storage of
every pixel DN, it is therefore most appropriately
used where the data can be considered of relatively
high spatial variability; i.e., where every pixel has
a unique and significant value. This applies to
satellite imagery or photographs, or where the
objective of our analysis means that we are inter-
ested in the spatial variability of the attribute or
phenomenon across an area, not just in discrete
classes.

There may, however, be times during spatial
analysis, for instance, when we need to convert
such maps and images of low spatial variability
into raster form. Usually such files are intermediary
and they are normally automatically removed at the
end of the analysis.

12.5.3 Representing spatial relationships

Because the raster data model is a regular grid,
spatial relationships between pixels are implicit in
the data structure since there can be no gaps or holes
in the grid. Any further explicit description of
spatial relationships is unnecessary.

Each raster is referenced at the top-left corner;
its location is denoted by its row and column
position and is usually given as 0, 0. All other
pixels are then identified by their position in the
grid relative to the top left. Each pixel in the
raster grid has eight immediate neighbours

Figure 12.2 Raster representation of cartographic features (point, line and area)
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(except those on the outside edges). In Fig-
ure 12.3, the cell at position 2, 2 is located at
3 pixels along the x axis and 3 down on the y
axis. Finding any one of eight neighbours simply
requires adding or subtracting from the x and/or y
pixel locations. For example, the value immedi-
ately to the left of (2, 2) is (2� 1, 2 or 1, 2).

Since the spatial relationships are implicit, the
whole the raster is effectively georeferenced by this
system; specifying the real-world location of the
0, 0 reference point and the cell size in real-world
distances enables rapid calculation of the real-
world locations of all other positions in the grid.
The upper left pixel being used as the reference
point for ‘raster space’ is in contrast to ‘map space’

where the lower left corner is the geographical
coordinate origin; this difference has an effect on
the way raster images are georeferenced (as de-
scribed in Chapter 13).

Another benefit of implicit spatial relationships is
that spatial operations are readily facilitated. Pro-
cessing can be carried out on each individual pixel
value in isolation, between corresponding pixel
positions in other layers, between a pixel value and
its neighbour’s values or between a zone of pixel
values and zones on other layers. This is discussed
in more detail in Chapter 14.

12.5.4 The effect of resolution

The accuracy of a map depends on the scale of
that map. In the raster model the resolution, scale
and hence accuracy depend on the real-world area
represented by each pixel or grid cell. The larger
the area represented, the lower the resolution of
the data. The smaller the area covered by the
pixel, the greater the resolution and the more
accurately and precisely the features are repre-
sented. This is demonstrated in Figure 12.4, where
the boundaries of the lithological units in the
geological map are most closely represented by
the raster grid whose spatial resolution is the
highest, i.e. whose pixels are the smallest
(Figure 12.4c). The problem arises at the bound-
aries of the classes; where a boundary passes
through a pixel, rules need to be applied to
decided how that pixel will be encoded. This issue
is discussed further later in this chapter.

Figure 12.4 The effect of raster resolution on precision of presentation

Figure 12.3 The organization of a simple raster grid and
its row and column reference system
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The raster data model may at first seem unap-
pealing, within GIS, because of its apparent spatial
inaccuracy, i.e. the limitation of the sampling
interval or spatial resolution, but it more than
makes up for this in its convenience for analytical
operations (being a 2D array of numbers). This is
especially true for any operations involving sur-
faces or overlay operations, and of course with
remotely sensed images. The pixel can be thought
of as the limit beyond which the raster becomes
discrete, and with computer power becoming ever
greater we may have fewer concerns over the
manageability of large, high-resolution raster files.
Providing wemaintain sufficient spatial resolution
to describe adequately the phenomenon of interest,
we should be able to minimize problems related to
accuracy.

12.5.5 Representing surfaces

Rasters are ideal for representing surfaces since a
value, such as elevation, is recorded in each pixel
and the representation is therefore ‘continuously’
sampled across the area covered by the raster.
Conceptually, we find it easiest to think of a surface,
from which we can generate a perspective view, as
being elevation or topography, but any raster can be
used as a surface, with its pixel values (or DNs)
being used to generate ‘height’ within 3D space, as
illustrated in Figure 12.5. The structure and use of
raster surfaces are dealt with in more detail in

Chapter 16. The input dataset representing the
surface potentially contributes two pieces of infor-
mation to this kind of perspective viewing. The first
is the magnitude of the DN which gives the height,
and the second is the way the surface appears or is
encoded visually, i.e. theDNvalue is alsomapped to
colour in the display.

12.6 Vector data

In complete contrast, the vectormodel incorporates,
discretely, both the geometry and location of geo-
graphic features and all the attribute information
describing them. For convenience, the attribute
information is generally viewed and accessed in
tabular form. Each vector feature has a unique
identifying code or number and then any number
of numerical or textual attributes, such that the
features can be symbolized according to any of
those attributes. In Figure 12.6 a simple vector
map is shown where the individual land parcels
are coded to represent two stored attributes
in Figure 12.6a and 12.6b respectively: land use
(nominal) and land value (ordinal); the alphanumer-
ic attributes used are shown on the right in
Figure 12.6.

This association of geometry and tabular attribute
is often referred to as a ‘georelational’ data structure
and, in this way, there is no limit to the attribute
information which can be stored or linked to a
particular feature object. This represents one very

Figure 12.5 A raster grid displayed, in perspective view, to illustrate the way that pixel values are used to denote
height and to form a surface network. The pixel values can be colour coded on a relative scale, using a colour lookup
table in which height values range from low to high, on a black to white scale in this case
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clear advantage over raster data’s single attribute
status. As with raster data, additional tables can also
be associated with the primary vector feature attri-
bute tables, to build further complexity into the
information stored.

Tabular data represent a special form of vector
data which can include almost any kind of data,
whether or not they contain a geographic compo-
nent; tabular data are not necessarily spatial in
nature. A table whose information includes and is
referenced by coordinates can be displayed directly
on a map. The information which does not must be
linked to other spatial data that do have coordinates
before it can be displayed on a map.

Vector data therefore consist of a series of dis-
crete features described by their coordinate posi-
tions rather than graphically or in any regularly
structured way. The vector model could be thought
of as the opposite of raster data in this respect, since
it does not fill the space it occupies; not every
conceivable location is represented, only those
where some feature of interest exists. If we were
to choose the vector model to represent some phe-
nomenon that varies continuously and regularly
across a region, such that the vector data necessarily
become so densely populated as to resemble a raster
grid, then we would probably have chosen the
wrong data model for those data.

12.6.1 Representing logical relationships

While the term ‘topography’ describes the precise
physical location and shape of geographical objects,
the term ‘topology’ defines the logical relationships
between those objects, so that data whose topologi-

cal relationships are defined can be considered
intelligently structured. GIS can then determine
where they are with respect to one another, as well
as what they represent. The difference between
these two concepts is illustrated in Figure 12.7.

Looking at the topographic map in Figure 12.7, it
is an easy for us to interpret the relationships – that
Regent’s Park completely encloses the Boating
Lake and shares a boundary with the zoo – but it
is not so for the computer. GIS can only understand
these spatial relationships through topological con-
structs and rules.

There have been a number of vector data models
developed over the past few decades, which support
topological relationships to varying degrees, or not
at all. The representation, or not, of topology dic-
tates the level of functionality that is achievable
using those data. These models include spaghetti
(unstructured), vertex dictionary, dual independent
map encoding (DIME) and arc-node (also known as
POLYVRT). To understand the significance of to-
pology it is useful to consider these models, from
the simplest to the more complex.

12.6.1.1 Unstructured or ‘spaghetti’ data
At the simplest level, each vector location is re-
corded as a single x, y coordinate pair, representing a
point. Points are either isolated or joined to form
lines, when each is then termed a vertex. Lines are
then recorded as an ordered series of vertices, and
areas are delimited by a series of ordered line
segments which enclose that area.

The information describing the features is stored
as a simple file listing the coordinate pairs of all the
points comprising the feature and a unique identi-
fying character for each feature. Three simple

Figure 12.6 A simple vector file colour coded to show (a) land use (nominal) and (b) land value (ordinal), and its
attributes, with feature number 4 highlighted in both the map and the attribute table
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vector features (area, line and point respectively)
and their file formats are shown in Figure 12.8. Each
feature is identified by a unique code (A, B or C in
this case) and by the number of vertices it contains,
followed by the coordinate pairs defining all the
constituent vertex locations. The order of the listed
points comprising the area and line features is
significant: they must be listed according to the
sequence of connection. Notice also that the area
feature is different from the line feature only in that
the first and last listed points are identical, indicat-
ing that the feature is closed.

In this ‘spaghetti’ form, vector data are stored
without relational information; there is no mecha-
nism to describe how the features relate to one
another, i.e. there is no topology. Any topological

relationships must be calculated from the coordi-
nate positions of the features; this was considered
inefficient and computationally costly.

The advantages of unstructured data are that their
generation demands little effort (this is perhaps
debatable) and that the plotting of large unstruc-
tured vector files is potentially faster than structured
data. The disadvantages are that storage is ineffi-
cient, theremay be redundant data and relationships
between objects must be calculated each time they
are required.

12.6.1.2 Vertex dictionary
This structure is a minor modification of the
‘spaghetti’ model. It involves the use of two files
to represent the map instead of one. Using the same

Figure 12.8 Three simple vector features stored as unstructured or ‘spaghetti’ data

Figure 12.7 (a) A topographicmap showing the Regent’s Park area in London; and (b) a topological map showing the
locations of London Zoo and the Boating Lake which lie inside Regent’s Park in London
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map shown in Figure 12.9 as an example, in the first
file the coordinate pairs of all the vertices are stored
as a list, with each pair being identified by a unique
ID number. The second file stores the information
describing which coordinate pairs are used by each
feature. This prevents duplication, since each coor-
dinate pair is stored only once, but it does not allow
any facility to store the relationships between the
features, i.e. topology is still not supported.

12.6.1.3 Dual independent map encoding
The DIME structure was developed by the US
Bureau of the Census for managing its population
databases; both street addresses and UTM coordi-
nates were assigned to each entity in the database.
Here again, additional files (tables) are used to
describe how the coordinate pairs are accessed and
used (as shown in Figure 12.10). This time the
vertices and arcs are given unique codes and each

arc is assigned a directional identifier to denote the
direction in which the feature is constructed (the
from and to vertices). In this way some topological
functionality is supported, through the connectivity
of features. Arcs which form polygons are listed in a
further file.

TheUSBureau of the Census later developed this
and released the TIGER/Line (or Topologically
Integrated Geographic Encoding and Referencing)
format in the 1990s. TIGER incorporates a higher
block level, thus a further level of hierarchy (with
unique block ID numbers), to add complexity.

12.6.1.4 Arc-node structure or POLYVRT
(POLYgon conVeRTer)

Here vector entities are stored separately but are
linked using pointers. A further concept of chains is
also added, in which chains form collections of line
segments with directional information.

Figure 12.10 The DIME data structure

Figure 12.9 Vertex dictionary model
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When capturing the boundaries of two adjacent
area features from a map, the double tracing of the
common boundary between them is inefficient and
can lead to errors (either gaps or overlaps). The
same is true for a point shared by a number of lines,
because the point may be stored many times. A
more efficient model for the storage of vector data,
and onewhich supports topological relationships, is
the ‘arc-node’ data structure.

We also have a potential problem in storing
polygons that have holes or islands in them. A
polygon that exists inside another polygon is often
termed an ‘island polygon’ (or hole) but if any of the
previously described data models are used, we have
no way of conveying that one lies inside the other,
they merely have location in common. There are
ways to get around this with other models if, for
whatever reason, the datamust remain unstructured.
If a value field is added to the polygon attribute table
which denotes some level of priority, then this value
can be used to control how the file is drawn or
plotted on the screen or display; polygons with low-
priority attributes would be drawn first and those
with high priority would be drawn last. In this way
the smaller, high-priority island polygons could be
made to draw on top of the outer polygon that
encloses them. If the polygon file in question con-
tains lithological outcrop patterns in a geological
map, for example, this task could get rather com-
plicated with many levels of priority required to
ensure the polygons are drawn in the correct se-
quence. Not an ideal solution!

A further level of complexity is therefore re-
quired to define properly such complex relation-
ships and so somemore definitionswould be helpful
at this point. A sequence of vertices forms a line
where the first and last verticesmay be referred to as
‘start’ and ‘end’ vertices, and these have special
significance and confer the direction of capture. An
arc is a line which, when linked with other arcs,
forms a polygon. Arcs may be referred to as edges
and sometimes as chains. A point where arcs termi-
nate or connect is described as a node. Polygons are
formed from an ordered sequence of arcs andmay be
termed ‘simple’ or ‘complex’ depending on their
relationship to other polygons. Where one polygon
completely encloses another, the outer polygon is
described as being complex. The outer polygon’s
boundary with the inner, island polygon may be

referred to as an inner ring (of which there may be
more than one) and its other, outer boundary is called
its outer ring. So one or more arcs form a ring.

This scheme is created from the moment of
capture, when the features are ‘digitized’. Each arc
is digitized between nodes, in a consistent direction;
it has a start and end node, and is given an identifying
number. At the same time, further attribute informa-
tion is entered which describes the identity of the
polygon features that exist to the left and to the right
of the arc being captured. When all the arcs are
captured and identified in this way, the topological
relationships between them are calculated and poly-
gons are constructed. Usually some minor mistakes
are made along the way but these can then be
corrected and the topological construction process
repeated until the polygon map is complete. The
same principle is then applied to line maps, for the
construction of networks for example.

A scheme of tables is used to describe how each of
the levels of information relates to another. The
coordinate pairs describing each arc are stored,
including its fromand tonodes, and anyother vertices
in between.Another table describes the arc topology,
i.e. which polygon lies to the left or to the right of
each arc (on the basis of the stored direction of each
arc). A third table describes the polygon topology,
listing the arcs that comprise each polygon. The last
table describes the node topology,which lists the arcs
that are constructed from each node.

For instance, consider the example used before
(and shown in Figure 12.11), this time slightly
modified by the addition of lines forming a bound-
ary around the polygon and line, forming new
polygons (three in total, labelledA, B andC). Nodes
are createdwheremore than two lines intersect, arcs
are created between the nodes, with vertices pro-
viding the shape.

12.6.1.5 New Structures
Since the development of POLYVRT, and in the
context of superior computing power, a new gener-
ation of vector models has been formed which do
not demand the rigorous construction of topologi-
cally correct data. The ESRI shapefile is a good
example of this. In such cases, topological relation-
ships are computed in memory, ‘on-the-fly’. In
terms of the formats described here, the ESRI
shapefile lies somewhere between ‘spaghetti’ and
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true topological structures. Thus the shapefile
concept enforces the organization of data into
separate types of shapefiles according to feature
class type (e.g. point, polyline, polygon, pointZ,
pointM, polylineZ, etc.; in all there are 14 possible
types), by grouping into themed feature datasets,
and by the use of complex file structures. The
shapefile actually consists of a minimum of three
files (.shp, .shx and .dbf) to store coordinates,
geometry and attributes, with a further file (.prj)
to describe map projection. This hybrid vector
format provides some freedom from the requirement
to capture rigorously and construct topologically
correct data, but does not replace it. Generally
speaking, vector models tend to be application
specific: different application areas tend to have
different demands on the data and so tend to adopt
slightly different formats as standard.

Many GISs employ a relational database man-
agement system (DBMS) to connect the attribute
information to the geometric information. More
recently, object-oriented databases have been de-
veloped. These allow discrete objects to belong to
discrete classes, and these may be given unique
characteristics. Most modern GISs are hybrids of
these in which the GIS functionality is closely
integrated with the management system. Such sys-
tems allow vector and raster data to bemanaged and
used together. The object-oriented type also inte-
grates a spatial query language to extend the hybrid
model; the ArcGIS geodatabase is an example of
this type of structure. Both ESRI coverages and
geodatabases are relational structures storing vector
data, allowing geometry to be shared between at-
tributes and vice versa. A coverage consists of a
database directory holding the vector feature data

Figure 12.11 A simple map to illustrate the concept of arc-node structure
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and its attributes as a series of files of specific names
and extensions, according to the type of coverage.
Both types use rules to validate the integrity of data
and to derive topological relationships between
features.

The use of topological relationships, however
they are defined, has several clear advantages,
including the more efficient storage of data, en-
abling large datasets to be processed quickly. One
important advantage is that analytical functions are
facilitated through three major topological con-
cepts: connectivity, area definition and contiguity.

12.6.1.6 Connectivity
Connectivity allows the identification of a pathway
between two locations, between your home and the
airport, along a bus, rail and/or underground route,
for instance. Using the arc-node data structure, a
route along an arc will be defined by two end points,
the start or from-node and the finish or to-node.
Network connectivity is then provided by an arc-
node list that identifies which nodes will be used as
the from and to positions along an arc. All connected
arcs are then identified by searching for node num-
bers in common. In Figure 12.11, for example, it is
possible to determine that arcs 1, 2 and 6 all intersect
because they share node 1. GIS can then determine
that it is possible to travel along arc 1 and turn onto
arc 2 because they meet at node 1.

12.6.1.7 Area definition
This is the concept bywhich it is determined that the
Boating Lake lies completely within Regent’s Park,
i.e. it represents an island polygon inside it, as
shown in Figure 12.7.

12.6.1.8 Contiguity or adjacency
Contiguity, a related concept, allows the determi-
nation of adjacency between features. Two features
can be considered adjacent if they share a boundary.
Hence, the polygon representing London Zoo can
be considered adjacent to Regent’s Park as shown in
Figure 12.8.

Remembering that the from-node and to-node
define an arc’s direction, so that the polygons on
its left and right sidesmust also be known, left–right
topology describes this relationship and therefore
adjacency. In the arc-node data structure shown in
Figure 12.11, polygon B lies to the left of arc 2, and

polygon A lies to the right, so we know that
polygons A and B are adjacent.

Notice the outer polygon which has no label here
but is often called the external or universe polygon;
it represents the world outside the area of interest
and ensures that each arc always has a left and right
side defined. So the arc joining points a and b, when
captured in that order, has polygon A to its right and
the universe polygon to its left. From this logic,
entered at the time of data capture, topological
entities are constructed from the arcs, to provide
a complex and contiguous dataset.

12.6.2 Extending the vector data model

Topology allows us to define areas and to model
three types of association, namely connectivity, area
definition and adjacency (or contiguity), but we
may still need to add further complexity to the
features we wish to describe. For instance, a feature
may represent a composite of other features, so that
a country could be modelled as the set of its
counties, where the individual counties are also
discrete and possibly geographically disparate fea-
tures. Alternatively, a featuremay changewith time,
and the historical tracking of the changes may be
significant. For instance, a parcel of land might be
subdivided and managed separately but the original
shape, size and attribute information may also need
to be retained. Other examples include naturally
overlapping features of the same type, such as the
territories or habitats of several species, or the
marketing catchments of competing supermarkets,
or surveys conducted in different years as part of an
exploration program (as illustrated in Figure 12.12).

The ‘spaghetti’ model permits such area subdi-
vision and/or overlap but cannot describe the rela-
tionships between the features. Arc-node topology
can allow overlaps only by creating a new feature
representing the area of overlap, and can only
describe a feature’s relationship with its subdivi-
sions by recording that information in the attribute
table.

Several new vector structures have been devel-
oped by ESRI and incorporated into its ArcGIS
technology. These support and enable complex
relationships and are referred to as regions, sections,
routes and events.
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12.6.2.1 Regions
A region consists of a loose association of related
polygons and allows the description of the relation-
ships between them. In the sameway that a polygon
consists of a series of arcs and vertices, a series of
polygons form a region. The only difference in the
structure is that, unlike the vertices listed in a
polygon, the polygons comprising the region may
be listed in any order. As with points, lines and
polygons, each region has a unique identifier. The
polygons representing featureswithin the region are
independent, they may overlap and they do not
necessarily cover the entire area represented by the
region. So the overlapping survey areas in Fig-
ure 12.12 could simply be associated within a
survey region, as related but separate entities, with-
out having to create a new, topologically correct
polygon for the overlap area.

Normally, each featurewould be represented by a
separate polygon but the region structure allows for
a single feature to consist of several polygons. For
example, the islands around Great Britain might be

stored as independent and unconnected polygons
but could belong to the collective region of the
United Kingdom and be given collective properties
accordingly.

Constructing overlapping regions is rather simi-
lar to constructing polygons; where regions overlap,
they share a polygon in the same way that polygons
share an arc where they meet, as shown in Fig-
ure 12.13. The use of regions should assist data
management since several different types of fea-
tures may be integrated into a single structure while
the original characteristics remain unchanged.

12.6.2.2 Linear referencing
Routes, sections and events can be considered
together since they tend not to exist on their own,
and together they constitute a system of linear
referencing as it is termed in ESRI’s ArcGIS. The
constructed route defines a new path along an
existing linear feature or series of features, as
illustrated in Figure 12.14. If we use the example
of getting from your home to the airport, your

Figure 12.13 Illustration of different types of region: associations of polygons and overlapping polygons which
share a polygon

Figure 12.12 (a) Map of the boundaries of three survey areas, carried out at different times. Notice that the areas
overlap in some areas; this is permitted in ‘spaghetti’ data but not in arc-node structures; (b) the same survey maps
after topological enforcement to createmutually exclusive polygonal areas; (c) the attribute table necessary to link the
newly created polygons (1 to 5) to the original survey extents (A, B and C). Modified after Bonham-Carter (2002)
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‘airport’ route would consist of a starting and fin-
ishing location and a unique path which follows
existing roads, bus routes or railways but does not
necessarily involve the entire lengths of those roads
and railways. A route may be circular, beginning
and ending in the same place. Routes may be
disconnected, such as one that passes through a
tunnel and so is not visible at the surface. A further
piece of information necessary for the description of
a route is the unit of measurement along the route.
This could be almost any quantity and for the
example of a journey the measure could be time
or distance.

A section describes particular portions of a route,
such as a where road works are in progress on a
motorway, where speed limits are in place on a road,
or where a portion of a pipeline is currently under-
going maintenance. Again, starting and ending
nodes of the section must be defined according to
the particular measure along the route.

Similarly an event describes specific occurrences
along a route, and events can be further subdivided
into point and linear events. A point event describes
the position of a point feature along a route, such as
an accident on a section ofmotorway or a leak along
a pipeline. The point event’s position is described
by a measure of, for instance, distance along the
route. A linear event describes the extent of a linear
feature along a route, such as speed restrictions
along a motorway, and is rather similar in function
to a section. A linear event is identified bymeasures
denoting the positions where the event begins and
ends along the route.

Route and event structures are of use in the
description of application-specific entities such as
seismic lines and shot-point positions, since

conventional vector structures cannot inherently
describe the significance of discrete measurements
along such structures. Along seismic lines the shot-
points are the significant units of measurement but
they are not necessarily regularly spaced or num-
bered along that line, so they do not necessarily
denote distance along it or any predictable quantity.
The use of routes and events becomes an elegant
method of accommodating such intelligence within
GIS since the route can be annotated with ameasure
which is independent of its inherent geometric
properties.

12.6.3 Representing surfaces

The vector data model provides several options for
surface representation: isolines (or contours), the
triangulated irregular network, or TIN, and, al-
though less commonly used, Thiessen polygons.
Contours can only describe the surfaces fromwhich
they were generated and so do not readily facilitate
the calculation of further surface parameters, such
as slope angle, or aspect (the facing direction of that
slope); both of these are important for any kind of
‘terrain’ or surface analysis. The techniques sur-
rounding the calculation of contours are compre-
hensively covered inmanyother texts and sowewill
skirt around this issue here.

12.6.3.1 The TIN surface model
or tessellation

The TIN data model describes a 3D surface com-
posed of a series of irregularly shaped and linked but
non-overlapping triangles. The TIN is also some-
times referred to as the ‘irregular triangular mesh’

Figure 12.14 Several routes representing different measures (linear and point events), created from and related to a
pre-existing polyline feature representing, in this case, a road network
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or ‘irregular triangular surface model’. The points
which define the triangles can occur at any location,
hence the irregular shapes. This method of surface
description differs from the raster model in three
ways. Firstly, it is irregular in contrast with the
regular spacing of the raster grid; secondly, the TIN
allows the density of point spacing (and hence
triangles) to be higher in areas of greater surface
complexity (and requires fewer points in areas of
low surface complexity); and lastly it also incorpo-
rates the topological relationships between the
triangles.

The process of Delaunay triangulation (formu-
lated by Boris Delaunay in 1934) is used to connect
the input points to construct the triangular network.
The triangles are constructed and arranged so that
no point lies inside the circumcircle of any triangle
(see Figure 12.15). Delaunay triangulation maxi-
mizes the smallest of the internal angles and so tends
to produce ‘fat’ rather than ‘thin’ triangles.

As with all other vector structures, the basic
components of the TIN model are the points or
nodes, and these can be any set of mass points with
which are stored values other than x, y and a unique
identifying number, i.e. a z value in their attribute
table (see Chapter 15 for more on z values). Nodes
are connected to their nearest neighbours by edges,
according to the Delaunay triangulation process.
Left–right topology is associated with the edges to
identify adjacent triangles. Triangles are con-
structed and break-lines can be incorporated to
provide constraints on the surface.

The input mass points may be located anywhere.
Of course themore carefully positioned they are, the
more closely the model will represent the actual
surface. TINs are sometimes generated from raster

elevation models, in which case the points are
located according to an algorithm that determines
the sampling ratio necessary to describe the surface
adequately. Well-placed mass points occur at the
main changes in the shape of the surface, such as
ridges, valley floors, or at the tops and bottoms of
cliffs. By connecting points along a ridge or cliff, a
break-line in the surface can be defined. Byway of a
simple example, for an original set of mass points
(as shown in Figure 12.16a) the resultant con-
structed TIN is formed with the input point eleva-
tions becoming the TIN node elevations
(Figure 12.16b). If this TIN is found to have under-
sampled (and so aliased) a known topographic
complexity, such as a valley, a break-line can be
included, such as a river. This then allows the
generation of additional nodes at the intersection
points with the existing triangles, and thereby fur-
ther triangles are generated better to model the
shape of the valley (Figure 12.16c).

Figure 12.15 The Delaunay triangle constructed from
three points by derivation of the circumcircle and cir-
cumcentre; the position of the latter is given by the
intersection of the perpendicular bisectors from the
three edges of the triangle

Figure 12.16 (a) Set of mass points, (b) the resulting TIN and (c) the new set of triangles and nodes formed by
addition of a break-line to the TIN
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Once the TIN is constructed, the elevation of any
position on its surface can be interpolated using the
x, y, z coordinates of the bounding triangle’s verti-
ces. The slope and aspect angles of each triangle are
also calculated during TIN construction, since these
are constant for each one.

Another description of a surface can be given
using Voronoi polygons (named after Georgy
Voronoi). It can be said that the Delaunay triangu-
lation of the set of points is equivalent to the dual
graph, or is the topological and geometric dual, of
the Voronoi tessellation (Whitney, 1932). The Vor-
onoi tessellation consists of a set of lines, within a
plane, that divide the plane into the area closest to
each of a set of points; The Voronoi polygons are
formed by lines that fall at exactly half the distance
between the mass points and are perpendicular to
the Delaunay triangle edges. Each Voronoi polygon
is then assigned the z value of the point which lies at
its centre. Once polygons are created, the neigh-
bours of any point are defined as any other point
whose polygon shares a boundary with that point.
The relationship between the Voronoi polygons and
the input points and Delaunay triangles is shown in
Figure 12.17.

TINs allow rapid display and manipulation but
have some limitations. The detail with which the
surface morphology is represented depends on
the number and density of the mass points and so

the number of triangles. So to represent a surface as
well and as continuously as a raster grid, the point
density would have to match or exceed the spatial
resolution of the raster. Further, while TIN genera-
tion involves the automatic calculation of slope
angle and aspect for each triangle, in the process
of its generation, the calculation and representation
of other surface morphological parameters, such as
curvature, are rather more complex and generally
best left in the realm of the raster. The derivation of
surface parameters is dealt with in Chapter 15.

12.7 Conversion between data
models and structures

There are sometimes circumstances when conver-
sion from raster to vector formats is necessary for
display and/or analysis. Data may have been cap-
tured in raster form through scanning, for instance,
but may be needed for analysis in vector form (e.g.
elevation contours needed to generate a surface,
from a scanned paper topographic map). Data may
have been digitized in vector form but subsequently
needed in raster form for input to some multi-
criteria analysis. In such cases it is necessary to
convert between models and some consideration is
required as to the optimummethod, according to the
stored attributes or the final intended use of the

Figure 12.17 (a) The input ‘mass’ points, (b) Voronoi polygons constructed from the input points, (c) circumcircles
(black) constructed from the input points and Delaunay triangles, and (d) the final TIN surface
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product. There are a number of processes which fall
under this description and these are summarized in
Table 12.2.

12.7.1 Vector to raster conversion
(rasterization)

These processes begin with the identification of
pixels that approximate significant points, and then
pixels representing lines are found to connect those
points. The locations of features are precisely de-
fined within the vector coordinate space but the
raster version can only approximate the original
locations, so the level of approximation depends on
the spatial resolution of the raster. The finer the
resolution, the more closely the raster will represent
the vector feature.

ManyGIS programs require a blank raster grid as
a starting point for these vector–raster conversions

where, for instance, every pixel value is 0 or has a
null or no data value. During the conversion, any
pixels that correspond to vector features are then
‘turned on’: their values are assigned a numerical
value to represent the vector feature.

12.7.1.1 Point to raster
For conversions between vector points and a dis-
crete raster representation of the point data, there
are several ways to assign a point’s value to each
pixel (as shown in Figure 12.18). The first is to
record the value of the unique identifier from each
vector point. In this case, whenmore than onevector
feature lieswithin the area of a single pixel, there is a
further option to accept thevalue of either the first or
the last point encountered since there may be more
than onewithin the area of the pixel. Another option
is to record avalue representingmerely the presence
of a point or points. The third choice is to record the
frequency of points found within a pixel. The fourth

Table 12.2 Summary of general conversions between feature types (points, lines and areas), in vector/raster form

Conversion type To point/pixel To line To polygon/area

From point/pixel Grid or lattice creation Contouring, line scan
conversion/filling

Building topology, TIN,
Thiessen polygons/
interpolation, dilation

From line Vector intersection, line
splitting

Generalizing, smooth-
ing, thinning

Buffer generation,
dilation

From polygon/area Centre point derivation,
vector intersection

Area collapse, skeleto-
nization, erosion,
thinning

Clipping, subdivision,
merging

Figure 12.18 (a) Input vector point map (showing attribute values). (b) and (c) Two different resulting raster
versions based on a most frequently occurring value rule (if there is no dominantly occurring value, then the lowest
value is used) (b), and a highest priority class rule (where the attribute values 1–3 are used to denote increasing
priority) (c)
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is to record the sum of the unique identifying num-
bers of all vector points that fall with the area of the
output pixel. The last is to record the highest priority
value according to the range of values encountered.

Point, line and polygon features can be converted
to a raster using either textual or numerical attribute
values. Only numbers are stored in the raster file –
numbers in a value range which dictates how the
raster data are quantized, as byte or integer data for
instance. So if text fields are needed to describe the
information in the output raster, an attribute table
must be used to relate each unique raster DN to its
text descriptor. When pixels do not encounter a
point, they are usually assigned a null (NoData) or
zero value. The last is to record the highest priority
value according to the range of values encountered.

The above rules decide the value assigned to the
pixel but further rules are required when points fall
exactly on the boundary between pixels. These are
used to determine which pixel will be assigned the
appropriate point value. The scheme used within
ESRI’s ArcGIS is illustrated in Figure 12.19, in
which a kind of kernel and associated logical rules
provide consistency by selecting the edge and di-
rection to which the value will be assigned.

Point to raster area conversions also include con-
version to the continuous rastermodel. This category
generally implies interpolation or gridding, of which
there are many different types. These processes
are dealt with in Chapter 15 rather than here.

12.7.1.2 Polyline to raster
A typical line rasterizing algorithm first finds a set
of pixels that approximate the locations of nodes.
Then lines joining these nodes are approximated by
adding new pixels from one node to the next one and

so on until the line is complete. As with points, the
value assigned to each pixel when a line intersects it
is determined by a series of rules. If intersected by
more than one feature, the cell can be assigned the
value of the first line it encounters, or merely the
presence of a line (as with point conversions above),
or of the line featurewith themaximum length, or of
the feature with the maximum combined length (if
more than one featurewith the same feature ID cross
it), or of the feature that is given a higher priority
feature ID (as shown in Figure 12.20). Again, pixels
which are not intersected by a line are assigned a
null or NoData value. Should the feature fall exactly
on a pixel boundary, the same rules are applied to
determine which pixel is assigned the line feature
value, as illustrated in Figure 12.19.

The rasterizing process of a linear object initially
produces a jagged line, of differing thickness along

Figure 12.20 (a) Input vector line map. (b) to (d) Three different resulting raster versions based on a maximum
length rule (or presence/absence rule) (b), maximum combined length rule (c) and a highest priority class rule (d)
where the numbers indicate the priority attribute values

Figure 12.19 Boundary inclusion rules applied when a
feature falls exactly on a pixel boundary. Arrows indicate
the directional assignment of attribute values. Modified
after ESRI’s ArcGIS online knowledge base
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its length, and this effect is referred to as aliasing. This
is visually unappealing and therefore undesirable but
it can be corrected by anti-aliasing techniques such as
smoothing.When rasterizing a lineor arc theobjective
is to approximate its shape as closely as possible, but,
of course, the spatial resolution of the output raster has
a significant effect on this.

12.7.1.3 Polygon to raster
The procedures used in rasterizing polygons are
sometimes referred to as ‘polygon scan conversion’
algorithms. These processes begin with the estab-
lishment of pixel representations of points and lines
that define the outline of the polygon. Once the
outline is found, interior pixels are identified ac-
cording to inclusion criteria; these determine which
pixels that are close to the polygon’s edge should be
included and which ones should be rejected. Then
the pixels inside the polygon are assigned the
polygon’s identifying or attribute value. This value
will be found from the pixel that intersects the
polygon centre.

The inclusion criteria in this process may be one
of the following, whose effects are illustrated in
Figure 12.21:

1. Central point rasterizing, where the pixel is
assigned the value of the feature which lies at
its centre.

2. Dominant unit or largest share rasterizing, where
a pixel is assigned the value of the feature (or
features) that occupies the largest proportion of
that pixel.

3. Most significant class rasterizing, where priority
can be given to a certain value or type of feature,
such that if it is encountered anywherewithin the
area of a pixel, the pixel is assigned its value.

When viewed in detail (as in Figures 12.18,12.20
and 20.21) it can be seen that the inclusion criteria
have quite different effects on the form of the raster
version of the input vector feature.

Again, if the polygon feature’s edge falls exactly
on a pixel edge, special boundary rules are applied
to determinewhich pixel is assigned the line feature
value, as illustrated in Figure 12.19.

12.7.2 Raster to vector conversion
(vectorization)

12.7.2.1 Raster to point
All non-zero cells are considered points and will
become vector points with their identifiers equal to
the DN value of the pixel. The input image should
contain zeros except for the cells that are converted
to be points. The x, y position of the point is
determined by the output point coordinates of the
pixel centroid.

12.7.2.2 Raster to polyline
This process essentially traces the positions of
any non-zero or non-null raster pixels to produce
a vector polyline feature, summarized in
Figure 12.22. One general requirement is that all
the other pixel values should be zero or a constant
value. Not surprisingly, the input cell size dictates
the precision with which the output vertices are
located. The higher the spatial resolution of the
input raster, the more precisely located the vertices
will be. The procedure is not simple and generally
involves several steps and is summarized as follows:

1. Filling: The image is first converted from a grey-
scale to a binary raster (through reclassification

Figure 12.21 (a) Input vector polygon map. (b) to (d) Three different resulting raster versions based on a dominant
share rule (b), a central point rule (c) and a most significant class rule (d)
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or thresholding), then any gaps in the features are
filled by dilation. The processes of filling and
dilating are described in Chapter 14.

2. Thinning: The line features are then thinned,
skeletonized or eroded, i.e. the edge pixels are
removed in order to reduce the line features to an
array or line of single but connected pixels.
More about thinning and erosion appears in
Chapter 14.

3. Vectorizing: The vertices are then created and
defined at the centroids of pixels representing
nodes, that is where there is a change in orienta-
tion of the feature. The lines are produced from
any connected chains of pixels that have identi-
cal DN value. The resultant lines pass through
the pixel centres. During this process, many
small and superfluous vertices are often created
and these must be removed. The vectors pro-
duced may also be complex and represent area
instead of a true linear feature.

4. Collapsing: Complex features are then simpli-
fied by reducing the initial number of nodes,
lines and polygons and, ideally, collapsing them
to their centre lines. One commonly adopted
method is that proposed byDouglas and Peucker
(1974), which has subsequently been used and
modified by many other authors.

5. Smoothing: The previous steps tend to create a
jagged, pixelated line, producing an appearance
which is rather unattractive to the eye; the vector
features are then smoothed or generalized, to
smooth this appearance and to remove unneces-
sary vertices. This smoothing may be achieved
by reducing the number of vertices, or using an
averaging process (e.g. a three- or five-point
moving average).

12.7.2.3 Raster to polygon
This is the process of vectorizing areas or regions
from a raster. Unless the raster areas are all entirely
discrete and have no shared boundaries, it is likely
that the result will be quite complex. Commonly,
therefore, this process leads to the generation
of both a line and a polygon file, in addition to
a point file representing the centres of the output
polygons

The polygon features are constructed from
groups of connected pixels whose values are the
same. The process begins by determining the inter-
section points of the area boundaries and then
follows this by generating lines at either external
pixel centroids or the boundaries. A background
polygon is also generated, otherwise any isolated
polygons produced will float in space. Again, such
vectorization procedures from raster images are
usually followed by a smoothing or generalization
procedure, to correct the ‘pixelated’ appearance of
the output vectors.

There are now a great many software suites
availablewhich provide awealth of tools to perform
these raster–vector conversions, some of which are
proprietary and some ‘shareware’, such as
MATLAB (MathWorks), AutoCAD (Autodesk),
R2V (developed by Able Software Corp.), Illustra-
tor, Freehand, etc.

12.8 Summary

Understanding the advantages and limitations of
particular methods of representing data is key not
only to effective storage and functionality but also
to production of a reliable/accurate result. Knowing

Figure 12.22 Illustration of polygon scan vectorization procedures: (a) image improvement by conversion to binary
(bi-level) image; (b) thinning or skeletonization process to reduce thickness of features to a single line of pixels; (c)
vectorized lines representing complex areas; (d) collapsed but still including spurious line segments; and (e) the lines
are smoothed or ‘generalized’ to correct the pixelated appearance and line segments removed
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how each data structure is used to describe
particular objects, and what the limitations or draw-
backs might be, is also useful.

The ability to describe topological relationships
is one significant advantage of the vector model.
The ability to describe (numerically) the relation-
ships between objects is very powerful indeed
and has no real equivalent in raster processing.
Spatial contiguity, connectivity and adjacency
have to be inferred through the implicit relation-
ship of one pixel to another, but there is no inherent
intelligence such as is enabled through topology.
This may not present too much of a disadvantage
in geoscientific analyses since we are often more
interested in the relationship between different
parameter values at one geographical position than
in the relationship between objects which are
geographically separated. In this sense, again it
is the local or neighbourhood raster operations
(discussed in Chapters 4 and 14) which gain our
attention.

Questions

12.1 Why is it important to understand the scales
or levels of data measurement when observ-
ing and recording information?

12.2 Whatare‘continuouslysampled’and‘discrete’
data?

12.3 What are the advantages of using one struc-
ture over another?

12.4 What are the practical applications for each
of these structures?

12.5 How should you decide on the most appro-
priate structure for a dataset?

12.6 Why does the shapefile not include topolog-
ical descriptions?

12.7 What are the differences between the topo-
logical vector model and the spaghetti vector
model? What are the advantages and disad-
vantages of using each one?

12.8 How should more complex vector features
(regions, routes and events) be organized?

12.9 What are the implications of spatial resolu-
tion on the raster representation of digital
information and on accuracy?

12.10 What problems can arise during conversion
between data models?

12.11 Are all these structures available in all soft-
ware products?

12.12 What functionality do we need in a GIS soft-
ware product to handle all these structures?

12.13 Do we need to invest in proprietary GIS
software in order to work with geographic
data?
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13
Defining a Coordinate Space

13.1 Introduction

Map projections and datums have been described
very comprehensively by many other authors and
we do not wish to repeat or compete with them, but
this topic is an extremely important one in the
understanding of GIS construction and functionali-
ty, and as such cannot be ignored here. We therefore
prefer to overview the main principles, concentrat-
ing on the practical applications, and refer the reader
to other more detailed texts.

Tomake GIS function, wemust be able to assign
‘coordinates’ of time and location in a way that is
generally understood. Calendar and temporal in-
formation can easily be included later as attributes
or in metadata. Location is therefore the most
important reference for data in GIS. Several terms
are commonly used to denote the positioning of
objects: georeference, geolocation, georegistra-
tion and geocoding. The main requirement for a
georeference is that it is unique, to avoid any
confusion. Hence the address, or georeference, of
the Royal School of Mines, Prince Consort Road,
London SW7 2AZ, United Kingdom, refers only to
one building; no other in theworld has this specific
address. Georeferencing must also be persistent
through time, again to avoid both confusion and
expense.

Every georeference also has an implication of
resolution, that is to a specific building, or collec-
tion of buildings, or a region. Many georeferencing

systems are unique only within a limited area or
domain; for example, within a city or county. There
may be several towns called Boston but only one is
in Lincolnshire. Some georeferences are based on
names and others on measurements. The latter are
known as ‘metric’ georeferences and they include
latitude/longitude and other kinds of regular coor-
dinate systems; such metric coordinates are more
useful to us as geoscientists. Some coordinate
systems involve combinations of metric measures
and textual information. For instance, the six digits
of a UK National Grid reference repeat every
100 km so that additional information (letters are
used in this case) is required to achieve country-
wide uniqueness. Metric systems provide infinitely
fine resolution to enable accurate measurements.
So how are systems for describing an object’s
location (and measurements associated with it)
established? The answer requires a metaphorical
step backwards and consideration of the shape of
the Earth.

13.2 Datums and projections

The Earth is a 3D object, roughly oblately spherical
in shape, andwe need to represent that 3D shape in a
2D environment, on paper or on a computer screen.
This is the reason for the existence of a multitude of
map projections – since this cannot be donewithout
distorting information, accurate measurements
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become potentially ambiguous. To achieve this 2D
representation, two things need to be approximated:
the shape of the Earth and the transformations
necessary to plot a location’s position on the map.

13.2.1 Describing and measuring the Earth

The system of latitude and longitude is considered
the most comprehensive and globally constant
method of description and is often referred to as
the geographic system of coordinates, or geodetic
system, and it is the root for all other systems. It
is based on the Earth’s rotation about its centre
of mass.

To define the centre of mass and so latitude and
longitude (see Figure 13.1), we must first define the
Earth’s axis of rotation and the plane through
the centre of mass perpendicular to the axis (the
equator).Slicesparallel to theaxisbutperpendicular
to the plane of the equator are lines of constant
longitude; these pass through the centre of mass and
are sometimes also referred to as great circles.
The slice through Greenwich defines zero degrees

longitudeand theanglebetween itandanyother slice
defines the angle of longitude, so that longitude then
goes from 180� west to 180� east of Greenwich. A
line of constant longitude is also called a meridian.
Perpendicular to ameridian, a slice perpendicular to
the axis and passing through the Earth but not
through its centre is called a parallel, also referred
to as a small circle, except for the equator (which is a
great circle).

We also need to describe the shape of the Earth,
and the best approximation of this is the ellipsoid of
rotation or spheroid. An ellipsoid is a type of
quadric surface and is the 3D equivalent of an
ellipse. It is defined, using x, y, z Cartesian coordi-
nates, by

x2

a2
þ y2

b2
þ z2

c2
¼ 1: ð13:1Þ

The Earth is not spherical but oblate and so the
difference between the ellipsoid or spheroid and a
perfect sphere is defined by its flattening (f), or its
reduction in the shorter minor axis relative to the
major axis.Eccentricity (e) is a further phenomenon
which describes how the shape of an ellipsoid

Figure 13.1 Schematic representation of the Earth, looking (a) down the pole, perpendicular to the equator, (b) and
(c) perpendicular to the pole from the equator, and (d) obliquely at the Earth. This illustrates the relationship between
longitude and the meridians (a), between the equator and major and minor semi-axes (b), and between latitude and
parallels (c), and the locations of the x, y and z axes forming Cartesian coordinates (d)
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deviates from a sphere (the eccentricity of a circle
being zero). Flattening and eccentricity then have
the following relationships:

f ¼ ða� bÞ
a

and e2 ¼ a2 � b2

a2
or e2 ¼ 2f � f 2

ð13:2Þ
where a and b are the lengths of the major and
minor axes respectively (usually referred to as
semi-axes or half lengths of the axes). The actual
flattening for the Earth’s case is about 1 part in 300.
Some of the first ellipsoids to be established were
not particularly accurate and were not actually
centred on the Earth’s centre of mass. Fortunately,
and rather ironically, the ColdWar, the nuclear arms
race and the need to target intercontinental missiles
helped to drive the development of an international
standard ellipsoid. The ellipsoid known as the
World Geodetic System of 1984 (or WGS84) is
now accepted as this standard although many others
are in use.

Latitude can now be defined as the angle be-
tween the equator and a line perpendicular to the
ellipsoid, which ranges from 90� north or south of
the equator (see Figure 13.1c). Latitude is com-
monly given the Greek symbol phi (f) and longi-
tude lambda (l). A line of constant latitude is
known as a parallel. Parallels never meet since
they are parallel to one another, whereas meridians
(lines of longitude) converge at the poles.

Longitude is more complex and only east–west
measurements made at the equator are true. Away
from the equator, where the lines of latitude
decrease in length, measures are increasingly short-
ened, by approximately the cosine of the latitude.
Thismeans that at 30� north (or south), shortening is
about 0.866, 0.707 at 45� and 0.5 at 60�. At 60� north

or south, 1� of longitude will represents 55 km
ground distance.

13.2.2 Measuring height: the geoid

The true shape of the Earth forms a surface which is
perpendicular to the direction of gravity, and is
described as an equipotential surface, in which
there are fluctuations and irregularities according
to variations in the density of the crust and mantle
beneath. The spheroid or ellipsoid can therefore be
thought of as a reasonable representation of
the shape of the Earth but not the true shape; this
we refer to as the geoid, and it is defined as an
‘equipotential surface which most closely resem-
bles mean sea level’. Mean sea level is used in this
context since it refers to everywhere and is a surface
perpendicular to gravity. In general, differences
between mean sea level and the geoid (referred to
as separation) are greatest where undulations in the
terrain surface are of the greatest magnitude but are
generally less than 1m.

The significance of the geoid’s variability is that
it leads to different definitions of height from one
place to another, since mean sea level also varies.
Different countries may define slightly different
equipotential surfaces as their reference. We should
therefore take some care to distinguish between
heights above geoid or spheroid (Figure 13.2).
Fortunately the differences are small so that only
highly precise engineering applications should be
affected by them. For reference, orthometric heights
and spheroidal heights are those defined with
respect to the geoid and spheroid respectively. The
variation in height from the geoid gives us
topography.

Figure 13.2 Heights above the spheroid and geoid
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13.2.3 Coordinate systems

Many different generic types of coordinate systems
can be defined and the calculations necessary
to move between them may sometimes be rather
complex. In order of increasing complexity they can
be thought of as follows. Spherical coordinates
are formed using the simplest approximation of a
spherical Earth, where latitude is the angle north or
south of the equatorial plane, longitude is the angle
east or west of the prime meridian (Greenwich) and
height is measured above or below the surface of the
sphere. If high accuracy is not important, then this
simple model may be sufficient for your purposes.
Spheroidal coordinates are formed using a better
approximation based on an ellipsoid or spheroid,
as described in 13.2.1, with coordinates of true
latitude, longitude and height; this gives us the
system of geodetic coordinates. Cartesian coordi-
nates involve values of x, y and z, and are defined
with their origin at the centre of a spheroid (see
Figure 13.1d). The x and y axes lie in the equatorial
plane, with x aligned with the Greenwich meridian,
and z aligned with the polar axis. Projection
coordinates are then defined using a simple set of
x and y axes, where the curved surface of the Earth is
transformed onto a plane, the process of which
causes distortions (discussed later).

Polar coordinates, generically, are those which
are defined by distance and angle, with distance
usually denoted r and angle u. Planar coordinates
refer to the representation of positions, as identi-
fied from polar coordinate positions, on a plane
within which a set of orthogonal x, y axes is
defined. The conversion between these polar and
planar coordinates, for any particular datum, is
relatively straightforward and the relationship
between them is illustrated in Figure 13.3. The
following expression can be used to derive the
distance (d) between two points a and b on an
assumed spherical Earth:

dða; bÞ ¼ R ar cos½sin fAsin fB

þ cos fAcos fBcos ðlA�lBÞ�
ð13:3Þ

where R is the radius of the Earth, A and B denote
the positions of points a and b on the sphere, l is
the longitude and f the latitude. Generically, the
x, y (planar) positions of the two points can be

derived from the polar coordinates as

x ¼ r sin u and y ¼ r cos u ð13:4Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and u ¼ arctan

y

x

� �
ð13:5Þ

where u is measured clockwise from north. The
Pythagorean distance between two points (a and b)
can then be found by the following, where the two
points are located at (xa, ya and xb, yb):

dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa þ xbÞ2 þðya þ ybÞ2

q
: ð13:6Þ

13.2.4 Datums

A geodetic datum is a mathematical approximation
of the Earth’s 3D surface and a reference
from which other measurements are made. Every
spheroid has a major axis and a minor axis, with the
major axis being the longer of the two (as shown in
Figure 13.1) but is not in itself a datum. Themissing
information is a description of how and where the
shape deviates from the Earth’s actual surface.
This is provided by the definition of a tie point,
which is a known position on the Earth’s surface
(or its interior, since theEarth’s centre ofmass could
be used), and its corresponding location on orwithin
the ellipsoid.

Figure 13.3 The relationship between polar and planar
coordinates in a single datum
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Complications arise because datums may be
global, regional or local, so that each is only accurate
for a limited set of conditions. For aglobal datum, the
tie point may well be the centre of mass of the Earth,
meaning that the ellipsoid forms the best general
approximation of the Earth’s shape, and that at any
specific positions and accuracies may be quite poor.
Suchgeneralizationswouldbeacceptablefordatasets
which are of very large or global extent. In contrast, a
local datum, which uses a specific tie point some-
where on the surface, near the area of interest, would
beusedfora‘local’projectordataset.Withinthisarea,
the deviation of the ellipsoid from the actual surface
will be minimal but at some distance from it may be
considerable. This is the reason behind the develop-
ment of the great number of datums and projections
worldwide. In practice, we choose a datum which is
appropriate to our needs, according to the size and
location of the area we are working with, to provide
us with optimum measurement accuracy. Some
common examples are given in Table 13.1.

It is worth noting that in many cases there may be
several different versions of datum and ellipsoid
under the same name, depending on when, where,
by whom and for which purpose they were deve-
loped. The differences between them may seem
insignificant at first glance but, in termsof calculated
ground distances, could produce very significant
differences between measurements.

13.2.5 Geometric distortions and
projection models

Since paper maps and geospatial databases are flat
representations of data located on a curved surface,

the map projection is an accepted means for fitting
all or part of that curved surface to the flat surface or
plane. This projection cannot be made without
distortion of shape, area, distance, direction or
scale. We would ideally like to preserve all these
characteristics but we cannot, so we must choose
which of them should be represented accurately at
the expense of others, or whether to compromise on
several characteristics.

There are probably 20 or 30 different types of
map projections in common usage. These have been
constructed to preserve one or other characteristics
of geometry, as follows:

1. Area: Many map projections try to preserve
area, so that the projected region covers ex-
actly the same area of the Earth’s surface no
matter where it is placed on the map. To
achieve this the map must distort scale, angles
and shape.

2. Shape: There are two groups of projections
which have either:
(a) a conformal property where the angles

and the shapes of small features are
preserved, and the scales in x and y are
always equal (although large shapes will be
distorted); or

(b) an equal area property where the areas mea-
sured on the map are always in the same
proportion to the areas measured on the
Earth’s surface but their shapes may be
distorted.

3. Scale: No map projection shows scale correctly
everywhere on themap, but formany projections
there are one or more lines on the map where
scale is correct.

Table 13.1 Examples of geodetic datums and their descriptive parameters

Datum Spheroid a b f Tie point

National Grid
of Great Britain
(OSGB)

Airy 1830 6 377 563 6 356 256.9 1/299.32 Herstmonceux

Pulkovoa Krassovsky 1940 6 378 245 6 356 863 1/298.3 Pulkovo
Observatory

M’poraloko 1951a Clarke 1880 6 378 249.2 6 356 515.0 1/293.47 Libreville

aIndicates that more than one variant exists for this datum.
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4. Distance: Some projections preserve neither
angular nor area relationships but distances in
certain directions are preserved.

5. Angle: Although conformal projections preserve
local angles, one class of projections (called
azimuthal projections) preserve the easting and
northing pair, so that angle and direction are
preserved.

Scale factor (k) is useful to quantify the amount of
distortion caused by projection and is defined by the
following:

k ¼ Projected distance

Distance on the sphere
: ð13:7Þ

This relationship will be different at every point
on the map and in many cases will be different in
each direction. It only applies to short distances.
The ideal scale factor is 1, which represents no
distortion at all. Most scale factors approach but are
less than 1.

Any projection can achieve one or other of these
properties but none can preserve all, and the
distortions that occur in each case are illustrated
schematically in Figure 13.4.

Once the property to be preserved has been
decided, the next step is to transform the information

using a ‘projectable’ or ‘flattenable’ surface. The
transformation or projection is achieved using
planar, cylindrical or cone-shaped surfaces that
touch the Earth in one of a few ways (Figure 13.5);
these form the basis for the three main groups of
projection. Where the surface touches the Earth at a
point (foraplane),alongagreatcircle (foracylinder)
or at a parallel (for a cone), projections of the tangent
type are formed. Where the surface cuts the earth,
rather than just touching it, between two parallels, a
secant typeofprojection is formed (seeFigure13.6).
The conic is actually a general form, with azimuthal
and cylindrical forms being special cases of the
conic type.

In the planar type (such as a stereographic
projection) where the surface is taken to be the
tangent to one of the poles, the following relation-
ship can be used to derive polar positions (all the
equations given here assume a spherical Earth for
simplicity):

u ¼ l and r ¼ 2 tan
x

2

� �
ð13:8Þ

where x represents the colatitude (x¼ 90� �f); the
resultant polar coordinates can then be converted to
planar coordinates using Equation (13.3). Of
course, the plane could be a tangent to the Earth
at any point, not just at one of the poles.

Figure 13.4 Schematic illustration of the projection effects on a unit square of side length i, where K represents the
scale along each projected side, and subscripts m and p represent meridian and parallel
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For cylindrical projections, the axis of the
cylinder may pass through the poles, for example,
so that it touches the sphere at the equator (as in the
Mercator). In this case, positions may be derived as

x ¼ l and y ¼ logetan
p
4
þ f

2

� �
: ð13:9Þ

For conic projections of the tangent type, the
following can be used to derive positions, assuming
one standard parallel at a colatitude of x0:

r ¼ u ¼ lcosðx0Þ and tanðx0Þþ tanðx� x0Þ:
ð13:10Þ

13.2.6 Major map projections

Based on the projection models described so
far, there are three broad categories of projection:
equidistant, equal area and conformal.

Figure 13.5 The threemain types of projectionwhich are based on the tangent case: planar (left), cylindrical (centre)
and conic (right). Modified after Bonham-Carter (2002)

Figure 13.6 The conic projection when based on the secant case, where the conic surface intersects at two standard
parallels. Modified after Bonham-Carter (2002)
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13.2.6.1 Cylindrical equidistant projection
In this projection the distances between one or two
points and all other points on themap differ from the
corresponding distances on the sphere by a constant
scaling factor. The meridians are straight and
parallel, and distances along them are undistorted.
Scale along the equator is true but on other parallels
is increasingly distorted towards the poles; shape,
area are therefore increasingly distorted in this
direction. An example is shown in Figure 13.7a.
The Plate Carree is an example of this type of
projection.

13.2.6.2 Cylindrical equal area projection
Here scale factor is a function of latitude so that,
away from the equator, distances cannot be mea-
sured from amapwith this type of projection. Shape
distortion is extreme towards the poles. Scale factor
is almost 1 on both meridians and parallels, as
follows, but only near the equator:

kmkp ¼ 1: ð13:11Þ
Scale factor along the parallels is given by sec f

and distortion along the meridians by cos f
An example is the Lambert cylindrical equal area
projection (e.g. Figure 13.7b).

13.2.6.3 Conformal: Mercator
In this case, the poles reach infinite size and distance
from the equator, producing a very distinct-looking
map. The meridians are parallel and angles are
preserved so these maps are acceptable for naviga-
tion (illustrated in Figures 13.7c and 13.8). The
scale factor (k) at any point on the map is a function
of latitude, as follows:

kp ¼ km ¼ sec f ð13:12Þ
The distortion that occurs towards (and which

is infinite at) the poles is a product of the way
the Mercator is constructed, as illustrated in
Figure 13.8a. This can be thought of by considering
an area between two meridians, both at the equator
and at a high latitude. The equatorial area appears
square with sides of 1� length in both longitude and
latitude. At high latitudes the area covers the same
distance in latitude as at the equator and is still 1�

wide but is narrower and covers a distance shown by
x in Figure 13.8, so the area is no longer square but

rectangular. On the projected map (Figure 13.8b)
the two meridians are shown, representing a differ-
ence of 1� longitude, and they are parallel, so when
the rectangle is projected it must be enlarged by a
factor 1/x to fit between them. This is the reasonwhy
areas are larger at higher latitudes and when this
scaling is done repeatedly, from the equator north-
wards, the Mercator coordinate net is produced. On
the Earth, a 1� distance at the equator is about
111 km.

13.2.6.4 Conformal: transverse mercator
This projection is a modification of the standard
Mercator designed for areas away from the equator.
In this instance, the cylinder is rotated through 90�

so that its axis is horizontal and its point of contact
with the Earth is no longer the equator but a
meridian. The scale factor is same in any direction,
and is defined by

k ¼ sec u ð13:13Þ
where u is equivalent to latitude (f), except that it
is the angular distance from the central meridian
rather than from the equator. In this case the
meridians are no longer parallel or straight (except
the central meridian), and the angle made between
the meridians and the central meridian (which
is grid north) can be described as convergence
(g). For the sphere projection convergence is
defined by

g ¼ dlsin f: ð13:14Þ

Then by turning the cylinder horizontally, the
central meridian of a transverse Mercator (TM)
projection could be based on any line of longitude
around the globe so as to be appropriate to
any particular country or region. The British
National Grid (OSGB) is a good example of this
type of projection: the United Kingdom covers a
greater distance in the north–south direction than it
does in the east–west direction, so to prevent
north–south distortion (as would be produced
by a Mercator), a TM with its central meridian at
0� longitude (i.e. Greenwich) is used (see
Figure 13.7d). Further rules can then be applied
to the TM to produce equal area, equidistant or
conformal projections.
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Figure 13.7 Common projection examples, as described in the text
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13.2.6.5 Conic projections
In these projections, themeridians are straight, have
equal length and converge on a point that may or
may not be a pole. The parallels are complete
concentric circles about the centre of the projection.
Such projections may be conformal, equidistant or
equal area. Examples include the Albers equal area
conic projection (illustrated in Figure 13.7e).

13.2.6.6 Planar (azimuthal) projections
Azimuthal projections preserve the azimuth or
direction from a reference point (the centre of the
map) to all other points; i.e., angles are preserved at
the expense of area and shape. In the polar case, the
meridians are straight and the parallels are complete
concentric circles. Scale is true only near the centre,
with the map being circular in form. Such projec-
tions may be conformal, equidistant or equal area.
Examples include theLambertAzimuthalEqualArea
projection (Figure 13.7f), or the stereographic azi-
muthal projection.

13.2.6.7 Conformal: Universal Transverse
Mercator

A further modification of the Mercator allows
theproductionof theUniversal TransverseMercator
(UTM)projectionsystem(illustratedinFigure13.9).
It is again projected on a cylinder tangent to a
meridian (as in the TM) and by repeatedly turning
the cylinder, about its polar axis, the world can be
divided into 60 east–west zones, each 6� longitude
in width. The projection is conformal so that shapes
and angles within any small area will be preserved.
This system was originally adopted for large-scale

military maps for the world, but it is now a global
standard and again is useful for mapping large areas
that are oriented in a north–south direction.

Projected UTM grid coordinates are then estab-
lished which are identical between zones. Separate
grids are also established for both northern
and southern halves of each UTM zone to ensure
there are no negative northings in the southern
hemisphere. Hence, when quoting a UTM grid
reference, it is essential to state eastings, northings,
zone number and the hemisphere (north or south) to
ensure clarity.

13.2.7 Projection specification

Several other parameters are necessary to define
precisely a particular projection. For example, the
Mercator requires a central meridian to be specified,
and this is given as the line of longitude onwhich the
projection is centred (it is commonly expressed in
radians). Coordinates defining a false northing and
easting are also required, to position the origin of
theprojection.Thesearenormallygiveninmetresand
are used to ensure that negative values are never
encountered.A scale factor is alsogiven, as a number
by which all easting and northing values must be
multiplied, to force the map onto the page. A conic
projectionof thesecant typerequires thespecification
of the first and second parallel (as latitudes thereof).
Some projections also require the origin of the
projection to be given as a latitude and longitude
coordinate pair; these are sometimes referred to as
thecentralmeridianandcentralparallel (Table13.2).

Figure 13.8 The relationship between meridians and scale on the sphere (a) and in the Mercator projection (b)
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The geodetic projection is a special type of map
projection (the simplest possible map projection)
where the easting value is exactly longitude, and the
northing value is exactly latitude. Since it does not
preserves angle, scale or shape, it is not generally
used for cartographic purposes but is commonly
used as the default option for recording simple
coordinate positions since it is the only globally
constant system. The datum associated with this
projection, to preserve its global applicability, is
always theWorld Geodetic System 1984 (WGS84).

13.3 How coordinate information
is stored and accessed

Vector data store their coordinate information
implicitly with each node position in real-world
coordinates and these are used directly to plot posi-
tions and to re-project fromonecoordinate system to
another. Raster data on the other hand have a regular
local row and column number system for each pixel
so that, internally, the geometry and position of a

Figure 13.9 The Universal Transverse Mercator system: (a) the cylindrical projection rotated about its axis, touching
the Earth along a meridian (any meridian) rather than the equator; (b) the arrangement of 6� zones and their central
meridians, starting at 180�W (there are 60 zones in all); (c) the arrangement of parallels andmeridians, in UTM zone 30,
about the central meridian, which in this case is 0� at Greenwich, appropriate for the United Kingdom, western Europe
and north-west Africa (separate projected grid coordinates are established for the northern and southern halves of each
UTM zone so that negative northings are never encountered)

Table 13.2 Some examples of projected coordinates systems

Projection
Central meridian

(longitude)
Central parallel

(latitude) False easting False northing Scale factor

OS GB 2�W 49�N þ 400 000 �100 000 0.999 601 2
UTM f > 0� Zonal 0� þ 500 000 0 0.999 6
UTM f < 0� Zonal 0� þ 500 000 þ 100 000 0.999 6
GK TM zone 11 63�E 0� þ 500 000 0 1
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pixel’s location are implicit. Externally, however, a
world geographic reference must be explicitly
stated; this requires the geographic location of the
image origin and the ground distance represented by
each pixel. A transformation is then performed,
which converts local image coordinates to real-
world coordinates for each pixel location using the
geometric operations described in Chapter 9. This
transformation information is also stored explicitly.

There are many binary image formats, such as
IMG, BSQ, BIL, BIP, GeoTIFF and various ASCII
grid formats, which are now accepted as standards.
Some of these store the georeferencing informa-
tion in the header portion of the actual image data
file. Other image formats store the information in
a separate ASCII text file, sometimes referred to
as the header file or world file, since it contains
the real-world transformation information used by
the image. Since these files are in ASCII text
format, they can be created or edited with any text
editor. Most GIS/mapping/CAD software will
detect and read this information automatically, if
it is present. The image-to-world transformation
is accessed each time an image is displayed and
visualized.

The contents of a world file, for a projected raster
image with plane coordinates, will look something
like this:

10:000 ðAÞ
0:00000000000000 ðBÞ
0:00000000000000 ðCÞ
�10:000 ðDÞ
567110:113454530548 ðEÞ
9415540:445499603346 ðFÞ

Most GIS software, when this file is present, will
perform an affine transformation of the following
form:

x1 ¼ AxþCyþE and y1 ¼ BxþDyþF

ð13:15Þ

where x1 and y1 are the calculated coordinates of a
pixel on the map, x and y are the pixel column
and row numbers in the image, A is the x scale
(dimension of a pixel inmap units in the x direction),

D is the negative of the y scale (dimension of a pixel
in map units in the y direction), B and C are
rotational terms, and E and F are translational terms
(centre coordinates of the top-left pixel). Note that
the y scale (D) is negative. This is because the
origins of a geographic coordinate system and of
a raster image are different: the geographic origin is
usually in the lower left corner whereas the origin of
an image is the upper left corner, so that y coordinate
values in the map increase from the origin upwards
and raster row values increase from the origin
downwards.

Programs such as ER Mapper, ArcInfo
(ArcGIS), ENVI, ERDAS Imagine and PCI
Geomatica contain routines to convert both image
and vector data between projections and datums,
while some programs only support re-projection
of vector data.

13.4 Selecting appropriate
coordinate systems

It is common to receive geospatial data created or
acquired by someone else, and we frequently need
to overlay datasets that are in different or unknown
or unspecified coordinate systems. Establishing the
projection and datum becomes of vital importance
before beginning any work and here again the use
and upkeep of metadata is vital. The metadata
should always contain information on the datum
and projection of a geospatial dataset in addition to
other information necessary to document its prove-
nance. Such information is often found in the header
file (or metadata) in the case of raster images, or
failing that, the dataset may have to be visually
compared with another dataset of known datum and
projection.

When creating a new dataset, or defining a new
project, selection of the most appropriate map
projection for any input data it is very important.
Selection considerations include the relative size of
the project area (e.g. the world, a continent or a
small region), its location (e.g. polar,mid-latitude or
equatorial) and its predominant extent (e.g. circular,
east–west axis, north–south axis or oblique axis). If
there is a pre-existing base layer, such as a scaled
map or georectified image, this may form the
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framework for all other data that are added or
created within the project.

The UTM projection is nearly correct in every
respect, for relatively small project areas, and is a
very common choice. There are some general
‘rules of thumb’ which are useful for continen-
tal-scale, or smaller, regions in mid-latitude
zones. For instance, for areas with a dominantly
north–south axis, UTM will provide conformal
accuracy; with an east–west axis, selection of a
Lambert conformal projection will give confor-
mal accuracy or the Albers equal area projection
will preserve area. Areas with an oblique axis
could be represented well by an oblique Mercator
projection (for conformal accuracy), and for an
area that has equal extent in all directions, a polar
or stereographic projection will give conformal
accuracy, or a Lambert azimuthal projection
could be chosen for area preservation.

The standard Gauss–Kruger (GK) projection
is sometimes also known as the Pulkovo 1942
Gauss–Kruger projection. Gauss-Kruger projec-
tions are implemented as a National Grid in
Germany, referred to as the DHDNGauss–Kruger,
and are also commonly used in Russia and China.
The GK projection is particularly suited for this
part of theworld since these countries occupy large
continental masses of considerable east–west

extent. A zonal system, similar to that of the UTM
but with zones of 3� width instead of 6�, is used for
Russia andChina, to ensureminimal distortion and
maximum conformality across the continent.

Questions

13.1 Why is it important to establish a structural
framework for the representation of digital
data?

13.2 What properties of the spherical Earth are
affected by the use of map projections?

13.3 How would you decide on the most appropri-
ate framework for a project?

13.4 What are the advantages and disadvantages of
the UTM system of reference?

13.5 What happens to the area represented by a
pixel when it is transformed between geodetic
and projected coordinates, particularly at high
latitudes?

13.6 How have you recorded your geographic
location data (field localities) in the past?How
accurately did you record their positions?
What coordinate system did you choose? And
how would you choose to record and display
them now?
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14
Operations

14.1 Introducing operations
on spatial data

It is probably fair to say that the average GIS suite
contains far more functions than most people will
ever need or be aware of! A long list of these, with
some descriptions, would be useful but would make
rather dull reading, so it is helpful for the purposes
of understanding to categorize them in some way.

Theway that processes are carried out depends on
how the data are structured and stored and since we
have already described the fundamental differences
between vector and raster data (in Chapter 12) we
should begin to understand the implications of using
one method of description over another. The differ-
ence between operations on raster and vector data
could be thought of as a dimensional one. Since one
raster represents the variance of one attribute, op-
erations affecting one raster pixel value occur in a
‘vertical’ dimension, through the stack of raster data
attributes, or a ‘horizontal’ dimension on one attri-
bute only (Figure 14.1), or a combination of these
two. Operations on vector features’ attribute values
occur in an n-dimensional space since the features’
values are stored in an attribute table which has
n attribute fields and the spatial extents of the input
features are neither regular nor necessarily equal.

Operations could begrouped on the basis of being
either ‘spatial’ or ‘non-spatial’. Those falling into
the non-spatial category could include reclassifica-

tions or statistical operations carried out within
tables. Truly spatial operations could include neigh-
bourhood processes such as convolution filtering
(see also Chapter 4), or functions used to enhance
the contrast of a raster image since these involve the
statistics of a region or of the whole image (see also
Chapter 3). In these cases, the processing itself
involves the manipulation of data in a spatial con-
text and produces results that reveal spatial patterns
more clearly.

Since the objectives of many ‘non-spatial’ opera-
tions may also lead to and be part of wider spatial
analyses, it is perhaps more useful to describe
them as operations which are carried out on spatial
data. Clearly there is a grey area here, and this is the
reason for referring simply to operations that are
performed upon data which are spatial in nature
rather than classifying the operations themselves.

A further, rather useful hybrid classification of
analytical operations could be made on the basis
of the type of output, map or table, as well as on
whether spatial variables were involved or not,
as summarized in Table 14.1, such that the simple
reassignment of values in one raster to another
scheme of values in a new raster (i.e. reclassifica-
tion) could be considered to produce map output
but not necessarily involve spatial attributes; or, at
the opposite end of the spectrum, the calculation of
spatial autocorrelation to produce a variogram pro-
vides tabular output and definitely involves the use
of attributes with spatial qualities.
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Another, perhaps more instructive way of classi-
fying them is in terms of the number of input data
‘layers’ involved: one, two ormore (Figure 14.1). In
general, those operations applied to raster data are
essentially the same as image processing, and here
is the overlap between image processing and GIS.
For instance, multi-layer raster data operations are
no different from multi-spectral image operations
except the attributes carry different meaning.

14.2 Map algebra concepts

Map algebra is an informal and commonly used
scheme formanipulating continuously sampled (i.e.
raster) variables defined over a common area. It is
also a term used to describe calculations within and
between GIS data layers, according to some math-
ematical expression, to produce a new layer; it was
first described and developed by Tomlin (1990).
Map algebra can also be used to manipulate vector
map layers, sometimes resulting in the production
of a raster output. Although no new capabilities are

brought to GIS, map algebra provides an elegant
way to describe operations onGIS datasets. It can be
thought of simply as algebra applied to spatial data
which, in the case of raster data, are facilitated by
the fact that a raster is a georeferenced numerical
array.

14.2.1 Working with null data

An essential part of map algebra or spatial analysis
is the coding of data in such a way as to eliminate
certain areas from further contribution to the analy-
sis. For instance, if the existence of low-grade land
is a prerequisite for a site selection procedure, we
then need to produce a layer in which areas of low-
grade land are coded distinctively so that all other
areas can be removed. One possibility is to set
the areas of low-grade land to a value of 1 and the
remaining areas to 0. Any processes involving mul-
tiplication, division or geometric mean that encoun-
ter the zero value will then also return a zero value
and that location (pixel) will be removed from the

Figure 14.1 Stacked georeferenced rasters indicating multi-layer operations, both local and neighbourhood

Table 14.1 Operations categorized according to their spatial or non-spatial nature. After Bonham-Carter (2002)

Output

Spatial attributes involved?

Yes No (not necessarily)

Map or
image

Neighbourhood processing (filtering),
zonal and focal operations,
mathematical morphology

Reclassification, rescaling (unary operations),
overlay (binary operations), thresholding
and density slicing

Tabular Spatial autocorrelation and variograms Various tabular statistics (aggregation, variety)
and tabular modelling (calculation of new
fields from existing ones), scattergraphs

178 PART TWO GEOGRAPHICAL INFORMATION SYSTEMS



analysis. The opposite is true if processing involves
addition, subtraction or arithmetic mean calcula-
tions, since the zero value will survive through to
the endof the process.The secondpossibility is touse
a null or NoData value instead of a zero. The null is a
special value which indicates that no information is
associated with the pixel position, i.e. there is no
digital numerical value. In general, unlike zero, any
expression will produce a null value if any of the
corresponding input pixels have null values.

Many functions and expressions simply ignore
null values, however, and in some circumstances
this may be useful, but it also means that a special
kind of function must be used if we need to test for
the presence of (or to assign) null values in a dataset.
For instance, within ESRI’s ArcGIS, the function
ISNULL is used to test for the existence of null
values and will produce a value of 1 if null, or 0 if
not. Using ERMapper’s formula editor, null values
can easily be assigned, set to other values, made
visible or hidden. Situations where the presence of
nulls is disadvantageous include instances where
there are unknown gaps in the dataset, perhaps
produced by measurement error or failure. Within
map algebra, however, the null value can be used to
great advantage since it enables the selective re-
moval or retention of values and locations during
analysis.

14.2.2 Logical and conditional processing

These two processes are quite similar and they
provide ameans of controlling what happens during
some function. They allow us to evaluate some
criterion and to specify what happens next if the
criterion is satisfied or not.

Logical processing describes the tracking of true
and false values through a procedure. Normally, in
map algebra, a non-zero value is always considered
to be a logical true, and zero, a logical false. Some
operators and functions may return either logical
true values (1) or logical false values (0), for example
relational and Boolean operators. The return of a
true or false value acts as a switch for one or other
consequence within the procedure.

Conditional processing allows that a particular
action can be specified, according to the satisfac-
tion of various conditions; if the conditions are

evaluated as true then one action is taken, and an
alternative action is taken when the conditions are
evaluated as false. The conventional if–then–else
statement is a simple example of a conditional
statement:

if i < 16 then 1 else null where i ¼ input pixel dn

Conditional processing is especially useful for
creating analysis ‘masks’. In Figure 14.2, each input
pixel value is tested for the condition of having a
slope equal to or less than 15�. If the value tests true
(slope angle is 15� or less), a value of 1 is assigned to
the output pixel. If it tests false (exceeds 15�), a null
value is assigned to the output pixel. The output
could then be used as a mask to exclude areas of
steeper slopes and allow through all areas of gentle
slopes, such as might be required in fulfilling the
prescriptive criteria for a site selection exercise.

14.2.3 Other types of operator

Expressions can be evaluated using arithmetic
operators (addition, subtraction, logarithmic, trig-
onometric) and performed on spatially coincident
pixel DN values within two or more input layers
(Table 14.2). Generally speaking, the order inwhich
the input layers are listed denotes the precedence
with which they are processed; the input or operator
listed first is given top priority and is performed
first, with decreasing priority from left to right.

A relational operator enables the construction of
logical functions and tests by comparing two num-
bers and returning a true value (1) if the values are

5 3 12 16

Slope angle (degrees)

(b)(a)

Slope mask

19

27

35

39

4542

37

29

201413

17

24

26

19
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15

31
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32

38

1 1 1

111

1

Figure 14.2 Logical test of slope angle data, for the
condition of being no greater in value than 15�: (a) slope
angle raster and (b) slopemask (pale grey blank cells indi-
cate null values)
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equal or false (0) if not. For example, this operator
can be used to find locations within a single input
layer with DN values representing a particular class
of interest. These are particularly useful with dis-
crete or categorical data.

A Boolean operator, for example AND, OR or
NOT, also enables sequential logical functions and
tests to be performed. Like relational operators,
Boolean operators also return true (1) and false
(0) values. They are performed on two or more
input layers to select or remove values and locations
from the analysis. For example, to satisfy criteria
within a slope stability model, Boolean operators
could be used to identify all locations where values
in one input representing slope are greater than 40�

AND where values in an elevation model layer are
greater than 2000m (as in Figure 14.3a).

Logical operators involve the logical comparison
of the two inputs and assign a value according to the
type of operator. For instance, for two inputs (A and
B) A DIFF B assigns the value from A to the output
pixel if the values are different or a zero if they
are the same. An expression A OVER B assigns the
value from A if a non-zero value exists; if not
then the value from B is assigned to the output
pixel. A combinatorial operator finds all the unique
combinations of values among the attributes of
multiple input rasters and assigns a unique value
to each combination in the output layer. The output
attribute will contain fields and attributes from all
the input layers.

All these operators can be used, with care, alone
or sequentially, to remove, test, process, retain or
remove values (and locations) selectively from

Table 14.2 Summary of common arithmetic, relational, Boolean, power, logical and combinatorial operators

Arithmetic Relational (return true/false) Boolean (return true/false)

þ , Addition ¼¼, EQ Equal ^, NOT Logical complement
�, Subtraction ^¼, <>, NE Not equal &, AND Logical AND
�, Multiplication <, LT Less than |, OR Logical OR
/, Division <¼, LE Less than/equal to !, XOR Logical XOR
MOD, Modulus >, GT Greater than

>¼, GE Greater than/equal to

Power Logical Combinatorial

Sqrt, Square root DIFF, Logical difference CAND, Combinatorial AND
Sqr, Square IN {list}, Contained in list COR, Combinatorial OR
Pow, Raised to a power OVER, Replace CXOR, Combinatorial XOR

Figure 14.3 Use of Boolean rules and set theory within map algebra; here the circles represent the feature classes
A, B and C, illustrating how simple Boolean rules can be applied to geographic datasets, and especially rasters to extract
or retain values, to satisfy a series of criteria: (a) A AND B (intersection or minimum); (b) A NOT B; (c) (A AND C) OR B;
(d) A OR B (union or maximum); (e) A XOR B; and (f) A AND (B OR C)

180 PART TWO GEOGRAPHICAL INFORMATION SYSTEMS



datasets alone or from within a spatial analytical
procedure.

14.3 Local operations

A local operation involves the production of an
output value as a function of the value(s) at the
corresponding locations in the input layer(s). As
described in Chapter 3, these operations can be
considered point operations when performed on ras-
ter data, i.e. they operate on a pixel and its matching
pixel position in other layers, as opposed to groups of
neighbouring pixels, which are dealt with in Sec-
tion 14.4. They can be grouped into those which
derivestatistics frommultiple input layers (e.g.mean,
median, minority), those which combine multiple
input layers, those which identify values that satisfy
specified criteria or the number of occurrences that
satisfy specified criteria (e.g. greater than or less
than), or thosewhich identify the position in an input

list that satisfies a specified criterion. All types of
operator previously mentioned can be used in this
context. Commonly they are subdivided according to
the number of input layers involved at the start of the
process. They include primary operations where
nothing exists at the start, to n-ary operations where
n layers may be involved; they are summarized in
Table 14.3 and illustrated in Figure 14.4.

14.3.1 Primary operations

This description refers primarily to operations used
to generate a layer, conceptually from nothing, for
example the creation of a raster of constant value, or
containing randomly generated numbers, such as
could be used to test for error propagation through
some analysis. An output pixel size, extent, data
type and output DN value (either constant or ran-
dom between set limits) must be specified for the
creation of such a new layer.

Table 14.3 Summary of local operations

Type Includes: Examples

Primary Creation of a layer from nothing Rasters of constant value or containing
randomly generated values

Unary Conversion of units of measurement and as
intermediary steps of spatial analysis

Rescaling, negation, comparing or
applying mathematical functions,
reclassification

Binary Operations on ordered pairs of numbers in
matching pixels between layers

Arithmetic and logical combinations of
rasters

N-ary Comparison of local statistics between several
rasters (many to one or many to many)

Change or variety detection

Figure 14.4 Classifying map algebra operations in terms of the number of input layers and some examples

CH14 OPERATIONS 181



14.3.2 Unary operations

These operations act on one layer to produce a
new output layer and they include tasks such as
rescaling, negation and reclassification. Rescaling
is especially useful in preparation for multi-criteria
analysis where all the input layers should have
consistent units and value range: for instance, in
converting from byte data, with 0 to 255 value
range, to a percentage scale (0–100) or a range of
between 0 and 1, and vice versa. Negation is used in
a similar context, in modifying the value range of a
dataset frombeing entirely positive to entirely nega-
tive and vice versa. Reclassification is especially
significant in data preparation for spatial analysis,
and so deserves rather more in-depth description,
but all these activities can be and are commonly
carried out in image processing systems.

14.3.2.1 Reclassification
This involves the process of reassigning a value, a
range of values, or a list of values in a raster to new
output values, in a new output raster. If one class (or
group or range of classes) is more interesting to us
than the other classes, its original values can be
assigned a specific value and all the others can
be changed into a different (background) value.
This involves the creation of a discrete raster from
either a continuous one or another discrete raster.
Reclassification can be applied to both vector and
raster objects.

In the case of discrete raster data, a reclassifica-
tion may be required to produce consistent units
among a set of input raster images, in which case a
one-to-one value change may be applied. The out-
put raster would look no different, spatially, from
the input, having the same number of classes, but the
values would have changed.

Different classes or types of feature may be
reclassified according to some criteria that are
important to the overall analysis. During the reclas-
sification process, weighting can be applied to
the output values to give additional emphasis to
the significant classes, and at the same time reduc-
ing the significance of other classes.

The example in Figure 14.5a shows a discrete
raster representation of a geological map in which
nine lithological units are coded with values 1 to 9
and labelled for the purposes of presentation,

according to their name, rock type and ages.
For the purposes of some analysis it may be neces-
sary to simplify this lithological information, for
example according to the broad ages of the units,
PreCambrian, Palaeozoic and Mesozoic, for in-
stance. The result of such a simplification is shown
in Figure 14.5c; now the map has only three classes
and it can be seen that the older rocks (Precambrian
and Palaeozoic) are clustered in the south-western
part of the area, with the younger rocks (Mesozoic)
forming the majority of the area as an envelope
around the older rocks. So the simplification of the
seemingly quite complex lithological information
shown in Figure 14.5a has revealed spatial patterns
in that information which are of significance and
which were not immediately apparent beforehand.
Figure 14.5d shows a second reclassification of the
original lithological map, this time on the basis of
relative permeability. The information is again
simplified by reducing the number of classes to
two, impermeable and permeable. Such a map
might form a useful intermediary layer in an exer-
cise to select land suitable for waste disposal but
also illustrates that subjective judgements are in-
volved at the early stage of data preparation. In
thevery act of simplifying information,we introduce
bias and, strictly speaking, error into the analysis.
We also have to accept the assumptions that the
original classes are homogeneous and true represen-
tations everywhere on the map, which they may not
be. In reality there is almost certainly heterogeneity
within classes and the boundaries between the clas-
sesmay not actually be as rigid as our classified map
suggests (these matters are discussed further in
Chapter 17).

Continuous raster data can also be reclassified
in the same way. The image in Figure 14.6a shows
a DEM of the same area with values ranging
between 37 and 277, representing elevation in
metres above sea level. Reclassification of this
dataset into three classes of equal interval to show
areas of low,medium and high altitude produces the
simplified image in Figure 14.6b. Comparison with
Figure 14.5b shows that the areas of high elevation
coincidewith the areaswhere older rocks exist at the
surface in the south-west of the area, again revealing
spatial patterns not immediately evident in the
original image. Reclassification of the DEM into
three classes, this time with the classes defined
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according to the natural breaks in the image histo-
gram (shown in Figure 14.7), produces a slightly
different result, Figure 14.6c. The high-elevation
areas are again in the south-west but the shape and

distribution of those areas are different. This de-
monstrates several things. Firstly, that very different
results can be produced when we simplify data so
that (and secondly)we should be careful in doing so,

Figure 14.6 (a) A DEM; (b) a DEM reclassified into three equal interval classes; and (c) a DEM reclassified into three
classes by natural breaks in the histogram (shown in Figure 14.7)

Figure 14.5 (a) Discrete raster representation of a geologicalmap,with nine classes representing different lithologies;
(b) one-to-one reclassification by age order (1 representing the oldest, 9 the youngest); (c) a reclassified and simplified
version where the lithological classes have been grouped and recoded into three broad age categories (PreCambrian,
Palaeozoic and Mesozoic); (d) a second reclassified version where the lithologies have been grouped according to their
relative permeability, with 1 representing impermeable rocks and 0 permeable; such an image could be used as a mask
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and, thirdly, that the use of the image histogram is
fundamental to the understanding of and sensible
use of reclassification of continuous raster data.
This issue is revisited later in Chapter 15.

Reclassification forms a very basic but important
part of spatial analysis, in the preparation of data
layers for combination, in the simplification of layer
information and especially when the layers have
dissimilar value ranges. Reclassification is one of
several methods of producing a common range
among input data layers that hold values on different
measurement scales.

Clear examples of the use of reclassification
within case studies can be found in Sections 20.3
and 21.2.

14.3.3 Binary operations

This description refers to operations in which there
are two input layers, leading to the production of
a single output layer. Overlay refers to the combi-
nation of more than one layer of data, to create
one new layer (using the standard operators de-
scribed in Section 14.2.4). The example shown in
Figure 14.8 illustrates how a layer representing
average rainfall, and another representing soil
type, can be combined to produce a simple, quali-
tative map showing optimum growing conditions
for a particular crop. Such operations are equiva-
lent to the application of formulae to multi-band
images, to generate ratios, differences and other

Figure 14.7 Image histogram of the DEM shown in Figure 14.6a and the positions of the reclassification thresholds
set by equal interval and natural break methods (shown in Figure 14.6b and c, respectively)

Figure 14.8 An example of a simple overlay operation involving two input rasters: (a) an integer raster representing
soil classes (class 2, representing sandy loam, is considered optimum); (b) a floating-point raster representing average
rainfall, in metres per year (0.2 is considered optimum); and (c) the output raster derived by addition of a and b to
produce a result representing conditions for a crop; a value of 2.2 (2 þ 0.2), on this rather arbitrary scale, represents
optimum growing conditions and it can be seen that there are five pixel positions which satisfy this condition
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inter-band indices (as described in Chapter 3), and
as mentioned in relation to point operations on
multi-spectral images, it is important to consider
the value ranges of the input bands or layers, when
combining their values arithmetically in some way.
Just as image differencing requires some form of
stretch applied to each input layer, to ensure that the
real meaning of the differencing process is revealed
in the output, here we should do the same. Either the
inputs must be scaled to the same value range, or if
the inputs represent values on an absolute measure-
ment scale then those scales should have the same
units.

The example shown in Figure 14.8 represents two
inputs with relative values on arbitrary nominal or
ordinal (Figure 14.8a) and interval (Figure 14.8b)
scales. The resultant values are also given on an
interval scale and this is acceptable providing the
range of potential output values is understood,
having first understood the value ranges of the
inputs, since they may mean nothing outside the
scope of this simple exercise.

Another example could be the combination of
two rasters as part of a cost-weighted analysis and
possibly as part of a wider least cost pathway
exercise. The two input rasters may represent mea-
sures of cost, as produced through reclassification
of, for instance, slope angle and land value, cost
here being a measure of friction or the real cost of
moving or operating across the area in question.
These two cost rasters are then aggregated or
summed to produce an output representing total
cost for a particular area (Figure 14.9).

14.3.4 N-ary operations

Herewe dealwith a potentially unlimited number of
input layers to derive any of a series of standard
statistical parameters, such as the mean, standard
deviation, majority and variety. Ideally there should
be a minimum of three layers involved but in many
instances it is possible for the processes to be
performed on single layers; the resultmay, however,
be rather meaningless in that case. The more com-
monly used statistical operations and their func-
tionalities are summarized in Table 14.4. As with
the other local operations, these statistical para-
meters are point operations derived for each indi-
vidual pixel position, from the values at correspond-
ing pixel positions in all the layers, rather than
from the values within each layer (as described in
Chapter 2).

14.4 Neighbourhood operations

14.4.1 Local neighbourhood

These can be described as being incremental in
their behaviour or operation. They work within a
small neighbourhood of pixels (which in some
circumstances can be user defined) to change the
value of the pixel at the centre of that neighbour-
hood, based on the local neighbourhood statistics.
The process is then repeated, or incremented, to the
next pixel position along the row, and so on until the

(b)

Ranked slope (friction 1)

3 4 7

7 8

(a)

Slope gradient (deg)

(c)

Ranked value (friction 2)

(d)

Toal cost  = f1 + f2

112

12

9 11 18

17 24

24

28 30

29

27

27221513

21

16

6 7 8 9 9

6 7 8 9 9

5 6 7 8 9

3 3 2 1 1

5 6 6 5 1

6 5 9 9 6

7 8 9 9 8

6 8 9 8 7 14

14 14

141412

16

17 15

10

10101010

10

11

1111

12 13

13

15 16

16

9

5 5 6 7 8

4 4 5 6 7

16

14

Figure 14.9 (a) Slope gradient in degrees; (b) ranked (reclassified) slope gradient constituting the first cost or
friction input; (c) ranked land value (produced from a separate input land-use raster) representing the second cost or
friction input; and (d) total cost raster produced by aggregation of the input friction rasters (f1 and f2). This total cost
raster could then be used within a cost-weighted distance analysis exercise
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whole raster has been processed. It is equivalent to
convolution filtering in the image or spatial domain,
as described in some detail in Section 4.2. In image
processing the process is used to quantify or en-
hance the spatial patterns or textures of a remotely

sensed image, for instance. Here we are often
dealing with data that are of implied 3D character,
for example the gradient or curvature (Laplacian) of
surface topography (see also Chapter 16) and, if so,
we are using the same process to quantify, describe

Table 14.4 Summary of local pixel statistical operations, their functionality and input/output data format

Statistic Input format Functionality Data type

Variety Only rasters. If a
number is input, it
will be converted
to a raster constant
for that value

Reports the number of different DN
values occurring in the input rasters

Output is integer

Mean Reports the average DN value among
the input rasters

Output is floating point

Standard
deviation

Rasters, numbers
and constants

Reports the standard deviation of the
DN values among the input rasters

Output is floating point

Median

Only rasters. If a
number is input, it
will be converted
to a raster constant
for that value

Reports the middle DN value among
the input raster pixel values. With an
even number of inputs, the values are
ranked and the middle two values are
averaged. If inputs are all integer,
output will be truncated to integer

If inputs are all
integer, output will
be integer, unless
one is a float, then
the output will be
a float

Sum Reports the total DN value among the
input rasters

Range Reports the difference between
maximum and minimum DN
value among the input rasters

Maximum Reports the highest DN value among
the input rasters

Minimum Reports the lowest DN value among the
input rasters

Majority Reports the DN value which occurs
most frequently among the input
rasters. If no clear majority, output¼
null, for example if there are three
inputs all with different values. If all
inputs have equal value,
output¼ input

Minority Reports the DN value which occurs
least frequently among the input
rasters. If no clear minority, as
majority

If only two inputs, where different,
output¼ null. If all inputs equal,
output¼ input. If only one input,
output¼ input
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or extract information relating to the morphology
of the surface described by the DN in the local
neighbourhood. Examples include calculations of
slope angle, aspect and curvature, andmathematical
morphology such as collapsing and expanding ras-
ter regions. These are described in more detail in
Chapter 16. Otherwise these neighbourhood pro-
cesses can be used to simplify or generalize discrete
rasters.

14.4.1.1 Distance
Mapping distance allows the calculation of the
proximity of any raster pixel to/from a set of target
pixels, to determine the nearest or to gain a measure
of cost in terms of distance. This is classified as
neighbourhood processing since the value assigned
to the output pixel is a function of its position in
relation to another pixel. The input is a discrete
raster image, in which the target pixels are coded,
probably with a value of 1 against a background of 0
(as illustrated in Figure 14.10a). This input image
may in itself be the product of an earlier reclassifi-
cation. The simplest form of this operation involves
the use of a straight line distance function, which
calculates the Euclidean distance from every pixel
to the target pixels (Figure 14.10b). Most GISs
will also offer a spherical Earth calculation as an
alternative which does not use any georeferencing
(projection) information.

The output pixel values represent the Euclidean
distance from the target pixel centres to every other
pixel centre and are coded in the value units of
the input raster, usually metres, so that the input
raster will usually contain integers and the output

normally floating-point numbers. The calculated
distance raster may then be further reclassified for
used as input to more complex multi-criteria analy-
sis or used within a cost-weighted distance analysis.

14.4.1.2 Cost pathways
This moving window or kernel procedure is used to
derive a cost-weighted distance and cost-weighted
direction (these are referred to slightly differently
depending on which software product you are
using) as part of a least cost pathway exercise. The
cost-weighted distance function operates by evalu-
ating each input pixel value of a total cost raster
(as in figure 14.9) and comparing it with its neigh-
bouring pixels. The average cost between each is
multiplied by the distance between them. Cost-
weighted direction is generated also from the total
cost raster, where each pixel is given a value using a
direction-encoded 3� 3 kernel, which indicates the
direction to the lowest cost pixel value from among
its local neighbours. These two rasters or surfaces
are then combined to derive the least cost pathway
or route across the raster, to the target.

14.4.1.3 Mathematical morphology
Mathematical morphology can be thought of as the
combination of map algebra and set theory, or of
conditional processing and convolution filtering.
As a concept it was first developed by Matheron
(1975) and then subsequently by many others. It
describes the spatial expansion and shrinking of
objects through neighbourhood processing and ex-
tends the concept of filtering. Such changes include
erosion or shrinking, dilation or expansion, opening
and closing of raster images. The size and shape of
the neighbourhoods used are controlled by struc-
turing elements or kernelswhich may be of varying
size and form. At its simplest, a kernel is a set of
values passed across a binary raster image, whose
status (1 or zero, ‘on’ or ‘off’) is changed according
to agreement with the values in the kernel. The
processing may not be reversible; for instance, after
eroding such an image, using an erosion kernel, it is
generally not possible to return the binary image to
its original shape through the dilation kernel. Sev-
eral different kinds of structuring kernels can be
used, including those which are square, in addition
to 1D, hexagonal, circular and irregularly shaped
ones.

Figure 14.10 (a) An input discrete (binary) raster and
(b) the straight line or Euclidean distance calculated from
a single target or several targets are coded to every other
pixel in an input
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Mathematical morphology can be applied to
vector point, line and area features but more often
involves raster data, commonly discrete rasters
and sometimes continuous raster surfaces, such as
DEMs. In the last case it can be used to find and
correct for errors or extreme values (high or low) in
those surfaces. Here we concentrate on the mecha-
nism of the operations involved. It has also been
used in mineral prospection mapping, to generate
evidence maps, and in the processing of rock thin-
section images, to find and extract mineral grain
boundaries. It is a method which has applications
in raster topology and networks, in addition to
pattern recognition, image texture analysis and
terrain analysis. These and related methods have
also been developed for edge feature extraction and
image segmentation, for example the Canny edge
detector and OCR text recognition (Parker, 1997).

To illustrate the effects, consider a simple binary
raster image showing two classes, as illustrated in
Figure 14.11. The values in the raster of the two
classes are 1 (inner, dark grey class) and 0 (sur-
rounding, white class); the image consists of a grid
of ones and zeros. This input raster is processed
using a series of 3� 3 structuring elements or
kernels (k), which consist of the values 1 and null
(rather than 0).

The kernels are passed incrementally over the
raster image, changing the central pixel each time,
according to the pattern of its neighbouring values.
The incremental neighbourhood operation is there-
fore similar to spatial filtering but with conditional
rather than arithmetic rules controlling the modifi-
cation of the central value.

A simple dilation operation involves the growth,
or expansion, of an object and can be described by

o ¼ i� k or dkðiÞ ð14:1Þ
where o is the output binary raster, i is the input
binary raster and k is the kernelwhich is centred on a
pixel at i, and d indicates a dilation. TheMinkowski
summation of sets (a� b) refers to all the pixels in a
and b, in which� is the vector sum, and a belongs to
set b, and b belongs to set a (Minkowski, 1911); the
Minkowski effect is where one shape is grown by
the shape of another. The values of i are compared
with the corresponding values in the kernel k, and
are modified as follows: the value in o is assigned a
value of 1 if the central value of i equals 1, or if any
of the other values in k match their corresponding
values in i; if they differ, the resultant value in owill
be 0. The result of this is to leave the inner values as
they are and to modify the surrounding outer values
by the morphology of the kernel. The effect of a
dilation, using kernel k1, is to add a rim of black
pixels around the inner shapes, and in doing so the
two shapes in the binary image are joined into one,
both having been dilated, as in Figure 14.12b. If the
output o1 is then dilated again using k1, then a
second rim of pixels is added, and so on. It can be
seen that by this process, the features are merged
into one. Using these conditional rules, the effect
of a dilation can be considered equivalent to a
maximum operation. Dilation is commonly used
to create amap or image that reflects proximity to or
distance from a feature or object, such as distance
from road networks or proximity to major faults.
These distance or ‘buffer’ maps often form an
important part of multi-layer spatial analysis, such
as in the modelling of mineral prospecting, where
proximity to a particular phenomenon is considered
a significant and favourable condition.

Figure 14.11 (a) Simple binary raster image (i); and (b) the three structuring kernels (k1, k2 and k3) the effects of
which are illustrated in Figures 14.12–14.14. The black dots in the kernels represent null values
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A simple erosion operation (a� b) has the
opposite effect, where � is a vector subtraction,
so that it involves the shrinking of an object using
the Minkowski subtraction, and is described by

o ¼ i � k or ekðiÞ ð14:2Þ

where e indicates an erosion. The values in o are
compared with those in k and if they are the same
then the pixel is ‘turned off’, i.e. the value in o will
be set to 0, or left unchanged if they are not the same.
The effect of this, using kernel k1, is the removal of a
rim of value 1 (grey) pixels from the edges of the
feature shown in Figure 14.12b to produce that
shown in Figure 14.12d. Using these conditional
rules, the effect of an erosion operation can be
considered equivalent to a minimum operation.
Notice that the output, o3, which is the product of
the sequential dilation of i, then erosion of o1, results
in the amalgamation of the two original objects, and
that the subsequent shrinking produces a general-

ized object which covers approximately the area of
the original, an effect known as closing (dilation
followed by erosion). Notice also that the repeated
erosion of o3 will not restore the appearance of the
two original features in i.

In Figure 14.13b, an erosion operation is per-
formed on the original i, removing one rim of pixels,
and causes the feature to be subdivided into two.
When this is followed by a dilation, the result is to
restore the two features tomore or less their original
size and shape except that the main feature has been
split into two. This splitting is known as an opening
(erosion followed by dilation) and is shown in
Figure 14.13c:

Opening; gkðiÞ ¼ dk½ekðiÞ�
Closing; fkðiÞ ¼ ek½dkðiÞ�: ð14:3Þ

Again, repeated dilations of the features after
opening will not restore the features to their appear-
ance in i.

Figure 14.12 Dilation, erosion and closing: (a) the original image (i); (b) dilation of i using k1 to produce o1; (c)
dilation of o1 also using k1 to produce o2; and (d) erosion of o1 using k1 to produce o3. Notice that o3 cannot be derived
from i by a simple dilation using k1; the two objects are joined and this effect is referred to as closing. The pixels added
by dilation are shown black and those pixels lost through erosion are shown with pale grey tones

Figure 14.13 Erosion, dilation and opening: (a) the original image (i); (b) erosion of i using k1 to produce o4;
(c) subsequent dilation of o4, using k1, to produce o5. Note that the initial erosion splits the main object into two smaller
ones and that the subsequent dilation does not restore the object to its original shape, an effect referred to as opening
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Closing can be used to generalize objects and to
reduce the complexity of features in a raster, such as
where a cluster of small features all representing the
same class are dilated into one region representing
that class and then eroded to reduce the features
to approximately the same area as before but with
reduced complexity. Opening can be used to per-
form a kind of sharpening or to add detail or com-
plexity to the image.

Dilationanderosionoperations canalsobecarried
out anisotropically, i.e. they can be applied by un-
equal amounts and in specific directions. Such direc-
tional operations are often relevant in geological
applications where there is some kind of structural
or directional control on the phenomenon of interest.

For example, the effect of kernel k2 on i is shown
in Figure 14.14a,where the effect is awestward shift
of the features by 1 pixel. The effect of kernel k3 is to
cause dilation in the NW–SE directions, resulting in
an elongation of the feature (Figure 14.14b).

To consider the effect of mathematical morphol-
ogy on continuous raster data, we can simply take
the binary image (i) shown in Figures 14.11–14.14

to represent a density slice through a raster sur-
face, such as an elevation model. In this case, the
darker class would represent the geographical
extent of areas exceeding a certain elevation value.
Figure 14.15a shows the binary image and a line of
profile (Figure 14.15b) across a theoretical surface
which could be represented by image (i). The effect
of simple dilation and erosion of the surface is
shown in Figure 14.15c; it can be seen that dilations
would have the effect of filling pits or holes, and
broaden peaks in the surface, while erosions reduce
the peaks or spikes, and widen depressions. Such
techniques could therefore be used to correct for
errors in generated surfaces, such as DEMs, except
that the dilations and erosions affect all other areas
of the surface too, including the parts which do not
need correcting. Such artefacts and errors in DEMs
cannot be properly corrected by merely smoothing
either, since the entire DEM will also be smoothed
and so degraded. The use ofmedian filters to smooth
while retaining edge features has been proposed but,
again, this is also undesirable for the same reason.
A modification of the mathematical morphology

Figure 14.14 Anisotropic effects: (a) the original image (i); (b) dilation of i using k2 to produce o6, causing
a westward shift of the object; and (c) dilation of i using k3, producing an elongation in the NE-SW directions to
produce o7

Figure 14.15 (a) The original input image with the position of a profile line marked; (b) the theoretical cross-
sectional profile with the shaded area representing the geographical extent of the darker class along the line shown in
(a); and (c) the effect on the profile of dilations and erosions of that surface
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technique has been proposed, known asmorpholog-
ical reconstruction (Vincent, 1993), for the correc-
tion ofDEMerrors. In this case, the original image is
used as a mask and the dilations and erosions are
performed iteratively on a second version of the
same image (marker image) until stability between
the mask and marker images is reached and the
image is fully reconstructed and no longer changes,
when the holes or pits are corrected (Figure 14.16).
Since morphological reconstruction is based on
repeated dilations, rather than directly modifying
the surface morphology, it works by controlling
connectivity between areas. The marker could sim-
ply be created by making a copy of the mask and
either subtracting or adding a constant value. The
error-affected raster image is then used as the mask,
and themarker (which is derived from it) is dilated or
eroded repeatedly until it is constrained by themask,
i.e. until there is no change between the two, and the
process thenstops.Bysubtractingaconstant fromthe
marker and repeatedly dilating it, extreme peaks can
be removed, whereas by adding a constant and
repeatedly eroding the marker, extreme pits would
be removed. The extreme values are effectively
reduced in magnitude, relative to the entire image
value range, in the reconstructedmarker image. This
technique can be (and has been) used selectively to
remove undesirable extreme values from DEMs.

14.4.2 Extended neighbourhood

The term ‘extended neighbourhood’ is used to
describe operations whose effects are constrained

by the geometry of a feature in a layer and per-
formed on the attributes of another layer. These
extended neighbourhood operations can be further
described as focal and zonal. If for instance slope
angles must be extracted from within a corridor
along a road or river, the corridor is defined from
one layer and then used to constrain the extent of the
DEM from which the slope angle is then calculated
(see Figure 14.17).

14.4.2.1 Focal operations
A focal operation is used for generating corridors
and buffers around features. Focal operations are
those that derive each new value as a function of
the existing values, distances and/or directions of
neighbouring (but not necessarily adjacent) loca-
tions. The relationships may be defined by such
variables as Euclidean distance, travel cost, engi-
neering cost or inter-visibility. Such operations
could involve measurement of the distance between
each pixel (or point) position and a target feature(s).
A buffer can then be created by reclassification of
the output ‘distance’ layer.

This allows specific values to be set for the
original target features, with the buffer zones and
for the areas beyond the buffers. In this way, it is
possible to establish the approximate proximity of
objects using a buffer. Buffer zones can also be used
as masks to identify all features that lie within a
particular distance of another feature. Buffers can
be set at a specified distance or at a distance set by an
attribute. Since the buffer is a reclassification of the
distance parameter, multiple buffer rings can also
be easily generated. Buffers are therefore particu-

Figure 14.16 Mechanism of morphological reconstruction of an image, as illustrated by a profile across the image:
(a) in this case, by repeated dilations of the marker until it is constrained by the mask image; (b) the extreme peaks are
reduced in magnitude in the reconstructed image
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larly useful for constraining the activities of spatial
analysis. Dilation, as described previously, is just
one method of creating a buffer.

14.4.2.2 Zonal operations
A zonal operation also involves the use of the
spatial characteristics of a zone or region defined
on one layer, to operate on the attribute(s) of a
second layer or layers. The zonal areas may be
regularly or irregularly shaped. This process falls
into the binary operations category since zonal
operations most commonly involve two layers. An
example is given in Figure 14.18 where zonal
statistics are calculated from an input layer repre-
senting the density of forest growth, within the
spatial limits defined by a second survey boundary
layer, to provide an output representing, in this
case, the average forest density within each survey

unit. Notice that the two raster inputs contain
integer values but that the output values are float-
ing-point numbers, as is always the case with mean
calculations.

14.5 Vector equivalents to raster
map algebra

Map algebra operations can be performed on vector
data too. The operators behave slightly differently
because of the nature of vector data but in many
cases are used to achieve the similar results.

14.5.1.1 Buffers
A zone calculated as the Euclidean distance from
existing vector features, such as roads, is referred to

Figure 14.18 Zonal statistics: (a) forest density integer image; (b) survey boundaries (integer) image; and (c) the
result of zonal statistics (in this case a zonal mean) for the same area. Note that this statistical operation returns a non-
integer result

Figure 14.17 Focal statistics: (a) a binary image representing a linear target feature (coded with a value of 1 for the
feature and 0 for the background); (b) a 10m focal image created around the linear feature, where each pixel is coded
with a value representing its distance from the feature (assuming that the pixel size is 5m� 5m), areas beyond 10m
from the feature remain coded as 0 ; and (c) binary focal zonemask with values of 1 within the mask and zero outside it.
This has a similar effect to a dilation followed by a reclassification, to produce a distance buffer
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as a buffer. Buffers are calculated at constant dis-
tance from the feature or at distances dictated by
attribute values, and each zone will be the same
width around the feature (see Figure 14.19). No
account is taken of the Earth’s curvature, so the
zones will be at the same width regardless of the
coordinate system. Negative distance values can be
used, and these will cause a reduction in the size of
the input feature. Buffers can also be generated on
only one side of input features (should this be
appropriate). The input layer in this case is a vector
feature but the outputmay be a polygon file or raster.
The same buffering operation can also be applied to
raster data (as described in Section 14.5.2) by first
calculating the Euclidean distance and then reclas-
sifying the output to exclude distances within or
beyond specified thresholds; the output will always
be a raster in this case. Buffering in this way can be
considered as the vector equivalent of conditional
logic combined with raster dilation or erosion.

14.5.1.2 Dissolve
When boundaries exist between adjacent polygon
or line features, they could be removed or dissolved
because they have the same or similar values for
a particular attribute (see Figure 14.20). As in a
geological map where adjacent lithological units
with similar or identical descriptions can sensibly
be joined into one, the boundaries between them are
removed by this process and the classes merged into
one. Complications in the vector case arise if the
features’ attribute tables contain other attributes
(besides the one of interest being merged) which
differ across the boundary; choices must be made
about how those other attributes should appear in

the output dissolved layer. This is equivalent to
merging raster classes through reclassification, or
raster generalization/simplification.

14.5.1.3 Clipping
The geometry of a feature layer can be used as a
mask to extract selectively a portion of another
layer; the input layer is thereby clipped to the extent
of the mask (see Figure 14.21). The feature layer
to be clipped may contain point, line or polygon
features but the feature being used as a mask must
have area, i.e. it will always be a polygon. The
output feature attribute table will contain only the
fields and values of the extracted portion of the input
vector map, as the attributes of the mask layer
are not combined. Clipping is equivalent to a binary
raster zonal operation, where the pixels inside or
outside the region are set as null, using a second
layer to define the region or mask.

14.5.1.4 Intersection
If two feature layers are to be integrated while
preserving only those features that lie within the

Figure 14.19 (a) Simple vector line feature map, labelled with attribute values (1 and 2); (b) output with buffers of
constant distance; (c) output map with buffers of distance defined by the attribute values shown in (a) (features with
attribute value 1 having buffers twice the distance of those of features with attribute value 2)

Figure 14.20 Vector polygon features (a) and the dis-
solved and simplified output map (b)
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spatial extent of both layers, an intersection can be
performed (see Figure 14.22). This is similar to the
clip operation except that the two input layers are
not necessarily of the same feature type. The input
layers could be point, line and/or polygon, so the
output features could also be point, line and/or
polygon in nature. New vertices need to be created
to produce the new output polygons, lines and
points, through a process called cracking. Unlike
the clip operation, the output attribute table contains
fields and values from both input layers, over the
intersecting feature/area. In the case of two inter-
secting polygons, intersection is equivalent to a
Boolean operation using a logical AND (Min)
operator between two overlapping raster images.

When two input overlapping feature layers are
required to be integrated such that the new output
feature layer contains all the geometric features and
attributes of two input layers, the union operation
can be used (see Figure 14.23). Since vector feature
layers can contain only points or only polygons,
here the inputs must be of the same type but the
number of inputs is not limited to two. Again, new

vertices will be created through cracking. This is
similar to the intersect operation but the output will
have the total extent of the input layers. New, minor
polygons are created wherever polygons overlap.
The attribute table of the output layer contains
attribute fields of both the input layers, though some
of the entries may be blank. In the polygon case,
it is equivalent to a binary raster operation using a
logical OR (Max) operator between overlapping
images.

14.6 Summary

The overlap with image processing is perhaps most
obvious in this chapter. The processing of the DN
values in various bands of a multi-spectral image is
analogous to that of raster grids in GIS using map
algebra. Local, focal, zonal, incremental and global
operations in raster GIS are synonymous with those
of image processing even though the objective
may be different. The use of conditional statements
is another parallel and represents the first step in the

Figure 14.21 Vector polygon clipping, using an input vector layer fromwhich an area will be extracted (a), the vector
feature whose geometric properties will be used as the mask (b) and (c) the output clipped vector feature

Figure 14.22 Intersection operation between two overlapping polygon features (a); the output intersecting polygon
(b) which covers the extent and geometry of the area which the two inputs have in common; the intersecting line
(c) and points (d) shared by both polygons. The output attribute table contains only those fields and values that exist
over the common area, line and points
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development of a more complex spatial analysis,
decision making. The use of the geometric proper-
ties of one layer to control the limits of operations on
another is a minor departure since this is less
commonly required in image processing but it is
perfectly possible using ‘regions of interest’ for
which statistics have been derived (Chapter 3).
Regions are spatially defined within the coordinate
space of the image, the extents of which are re-
corded in association with the raster image in-
formation (header). Statistics can be calculated
globally and for the region and these can be manip-
ulated on any of the bands of the image. These are in
essence zonal operations.

This chapter focused on operations that assume
raster inputs. Many of these operations have vector
equivalents, and in some circumstances it could be
argued that they could be carried outmore effectively
using vector data. The diversity of raster-based op-
erations is, however, testament to their significance
in the processing of continuously sampled data
whose spatial variability is significant. This is espe-
cially the case in geoscientific applications, where
we are deeply concerned with the way variables
change from one location to another as well as the
spatial relationships between the variables.

Map algebra plays a major role in multi-criteria
and multi-objective problems, by linking together
these simple processes and procedures to prepare

data and build complex models, and so to tackle
complex spatial problems, which are discussed
further in Chapter 18.

Questions

14.1 With respect to the nature of the classes being
represented, what assumptions are made dur-
ing spatial operations on categorical (discrete)
rasters?

14.2 How should we use these tools to scale (pre-
pare) our data as input for spatial analysis?
Andwhat are the effects of using those scales?

14.3 How should you decide on the threshold
values for reclassification schemes?

14.4 Why is it important to understand the nature of
the input recorded data when applying local
statistical operations?

14.5 What are the practical applications of mathe-
matical morphology?

14.6 For further consideration beyond this chapter
(see Chapter 18):
(a) How do these individual operations com-

bine and contribute to more complex
spatial analytical models?

(b) Are discrete and continuous rasters trea-
ted differently within spatial analyses?

Figure 14.23 Vector polygon union operation where two polygon features overlap (a), and the output object
(b) covers the extent and geometry of both inputs. The output attribute table also contains the attribute fields and
values of both input features
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15
Extracting Information from
Point Data: Geostatistics

15.1 Introduction

The data that we have at our disposal are never
complete; we have either the wrong kind or insuffi-
cient or partial coverage. Naturally, we seekways to
predict the values between, or to extrapolate be-
yond, the limits of our data; indeed, therein also lies
the role ofmulti-criteria spatial analysis, but wewill
deal with that in Chapter 18.

This chapter deals with two topics: gaining a
better understanding of the data and dealing with
incomplete data. If we understand the nature and
meaning of the sample data that we do have, wewill
have a better chance of producing a reliable predic-
tion of the unknowns. After all, one of the most
importantmessages of this book is that producing an
impressive result is not enough; if it cannot be
explained or understood, it is meaningless.

This chapter therefore covers the subject of
geostatistics, a term first coined with ‘trepidation’
by Hart (1954) and first used in mineral resource
evaluation in an attempt to predict the potential
economic value of a mineral deposit from limited
sample data by George Matheron and Daniel Krige
in 1951. Such techniques have subsequently been
applied to many disciplines other than the geos-
ciences. The many and varied uses of geostatistics
include, for example, the description and summary

of spatial data attributes, simplifying complex spa-
tial patterns, inferring the characteristics of a larger
population on the basis of a sample, estimating the
probability of an outcome location and establishing
how closely a predicted spatial pattern matches an
actual one. Geostatistics is concerned with the
description of patterns in spatial data; each known
data point has a geographic location and avalue, and
the connection between them is exploited to help
predict values at the unknown locations. There are
many, truly comprehensive accounts of geostatis-
tical methods which are listed in the general refer-
ences and further reading section. We aim only to
give an overview of the main issues and methods
involved in extracting and exploiting statistical
data, and in getting over the problem of incomplete
data.

Early qualitative questions about the nature of
processes and phenomena have quickly developed
into more quantitative questions, ‘how much’ or
‘to what degree’ and ‘how sure are we that the
result is true or representative?’ This touches on
the issue of uncertainty in data and analysis (this is
discussed in more detail in the Chapter 17). Asking
‘why’ is rathermore tricky for GIS to tackle since it
requires the unravelling of causative links between
phenomena and this is a dangerously speculative
area.

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
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In dealing with the estimation of unknownvalues
from known ones, this chapter also overlaps with
topics in Section 9.2.

15.2 Understanding the data

We should never underestimate the importance of
understanding our data, how they were collected,
how reliable and accurate their geographic positions
are, what area of ground they represent and whether
their values represent one or more statistically
independent populations; all these should be con-
sidered when thinking about how to process data
and interpret the result.

15.2.1 Histograms

Avital tool in the understanding of the data, and one
which should be our first port of call, is the histo-
gram. It shows us the count of data points falling
into various ranges (the frequency distribution). The
histogram shows us the general shape and spread,
symmetry of distribution and modality of the data,
and should reveal outliers.

No interpolation method should be used without
a full understanding of the implications and effects
on the result. If any of the methods that are used to
interpolate data comprises more than one statisti-
cally independent population, then the result is
flawed. Or, if predictions are to be based on calcula-
tions from such datasets which contain more than
one population, the actual recorded values could

be considerably less than the predicted ones. For
instance, in the case of predicted output of metal
from an actively producing mine, predictions of
total metal production based on the concentrations
measured at discrete sample points within the mine
may significantly overestimate production if the
existence of different and unrelated mineralisations
within the sample data is not recognized.

Here again the data histogram becomes a vital
tool in understanding the data. It should always be
carefully examined beforehand, to establish how the
data are composed. If the data are not normally
distributed about the mean but skewed, there must
be a reason for it, and it will be necessary to consider
the existence ofminor populations as the reason (see
Figure 15.1). Skewness in the data histogram could
indicate a sampling, measurement or processing
problem, or it could point to some real but unknown
pattern in the data; either way, it should be investi-
gated before proceeding. There are two important
messages here: firstly, the possibility of erroneous
numerical predictions from the data and, secondly,
the fact that interpolating such data across multiple
populations could produce a surface which is
meaningless.

15.2.2 Spatial autocorrelation

The simplest method of estimating values at un-
known positions from known sample values might
be to average them, but this is sensible only if the
values are independent of their location. Normally,
however, a variable defined continuously over an

Figure 15.1 Schematic histograms of a theoretical data population and theoretical sub-populations which could
exist within the dataset
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area does not change greatly from one place to
another and so we can expect the unknown values
to be related to those at nearby known points. This
behaviour is described by Tobler’s first law of
geography (Tobler, 1970), which states that
‘everything is related to everything else, but near
things are more related than distant things’. The
formal property that describes this is spatial auto-
correlation (SAC). Correlation represents the de-
gree to which two variables or types of variables are
related, while spatial autocorrelation represents the
degree to which that correlation changes with dis-
tance. In the context of a raster image, this can be
likened to making a copy of an image and overlay-
ing the first one precisely; the two should be exactly
correlated. If one image is then shifted by 1 pixel
relative to the other and the correlation between
them is examined again, they should still be very
highly correlated. Continuing this process, shifting
by 1 pixel and recalculating the correlation should
lead to a point where the two images have been
shifted so far that they are almost uncorrelated. If
the collective results of this process are examined, a
measure of SAC is produced. Understanding spatial
autocorrelation is very useful since it can reveal and
describe systematic patterns in the data which may
not otherwise be obvious and may in turn reveal an
underlying control on variation. Patterns which are
truly random exhibit no spatial autocorrelation.
SAC is important because it provides a measure of
correlation in the dataset, and because it tests the
assumption of randomness in the data. Here we
recall the autocorrelation matrix introduced in
Section 9.3.2, which characterizes the SAC in every
direction.

Both positive and negative autocorrelation exist
and are opposites of one another. Positive spatial
autocorrelation occurs where near values or areas
are alike and negative spatial autocorrelationwhere
near values or areas are inversely correlated, while
zero indicates no correlation between the two.

In general, two assumptions aremade of spatially
autocorrelated errors. The first is that the average
error will be zero because the positive and negative
fluctuations around the trend will cancel out one
another. The second is that the precise locations of
the errors are not significant, only their relative
positions with respect to each other, a relationship
known as stationarity.

15.2.3 Variograms

The variogram or more commonly the semi-
variogram (half the variogram) is the main measure
of similarity within a data population and is a
principal tool of geostatistics. It is a statistical func-
tion that describes the decreasing correlation be-
tween pairs of sample values as the separation
between them increases. Other tools such as the
correlogram and covariance functions are also used
but these are all very closely related to thevariogram.
A covariance cloud reveals the autocorrelation be-
tween pairs of data points, where each point in the
cloud also represents a pair of points in the dataset.
The cloud is generated by plotting the distance
between the points against the squared difference
between their values; pointswhich are close together
should also be close in value. As the distance be-
tween points increases, the likelihood of correlation
between the point values decreases. The form of the
cloud and the function fitted to it comprise the semi-
variogram. The semi-variogram z(d) is then a func-
tion describing the degree of spatial dependence of a
variable or process, and in general is defined by

zðdÞ ¼ 1

2n

Xn
i¼1

½zðxiÞ�zðxi þ dÞ�2 ð15:1Þ

where n is the number of sample pairs (observations
of value z separated by distance d ) being evalua-
ted, and xi represents the positions of the points
being compared. An idealized (theoretical) semi-
variogram is a function defined by the relationship
between the semi-variogram z(d ) and distance (d )
between sample points; it is a plot of z(d ) against d,
as in Figure 15.2, and is used to describe data
populations. There are several forms of theoretical
semi-variogram and these can be defined as follows
and illustrated schematically in Figure 15.2.

A linear variogram, zl(d ), is a special and rather
theoretical case, since it never reaches a sill, and is
described by

zlðdÞ ¼ c0 þ pd ð15:2Þ
where c0 represents the nugget effect (which is
random), p represents the gradient of the function,
which is constant in the linear case, and d is the
distance or lag. A spherical variogram, zs(d), can be
used to fit data which reach a distinct sill.When z(d)
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becomes constant and the sill roughly equals the
calculated sample variance,

zsðdÞ ¼ c0 þ c1
3d

2a
� 1

2

d

a

� �3
" #

when 0 � d � a

or zðdÞ ¼ c0 þ c1 when d � a ð15:3Þ

where a is the distance to the sill or range. If there is
a only a gradual approach to the sill, an exponential
variogram, ze(d) provides a good fit and can be
described by

zeðdÞ ¼ c0 þ c1ð1�e�d=aÞ: ð15:4Þ
The spherical and exponential variograms can be
referred to as ‘transitive’ forms because the corre-
lation varies with distance or lag (d). Variogram
forms which have no sill can be described as ‘non-
transitive’ and the linear form can be used.

As illustrated inFigure 15.3, in a semi- variogram,
pairs of points plotted in the lower left-hand corner
are close one another spatially and have highly
correlated values, and the opposite is true of points
plotted near the upper right corner. The values of
pairs of points plotted in the upper right of the
semi-variogram (e.g. on the sill) can be considered
to be uncorrelated. Like the histogram, the semi-
variogram is useful for detecting outliers or pairs of
points which have erroneous values, such as two
closely adjacent points with wildly differing values.

15.2.4 Underlying trends and natural barriers

The trend can be thought of as an underlying control
on the overall pattern of the data vales. If for
instance the variable being predicted is elevation,
the trend could be the regional slope gradient. In soil

Figure 15.2 The form of several theoretical form of
semi-variogram commonly used (linear, spherical and
exponential, although there are several others), show-
ing the relationship between the function, its sill
(c, where c¼ c0 þ c1) and the distance (d) at which
the sill is reached (a). Pairs of points plotted in the
lower left-hand corner of the semi-variogram are close
one another spatially; the opposite is true of points near
the top-right corner of the semi-variogram

Figure 15.3 (a) Semi-variogram for a set of points (the y axis represents z(d) and the x axis the distance between
points, as in Figure 15.2); and (b) themap of those points showing the relative positions (as cyan-coloured links) of the
point pairs highlighted (also in cyan) in (a). The point values represent depth below sea level to a stratigraphic horizon
and reveal a gently sloping surface; these values are used in the examples of interpolation types later on
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or sediment geochemical data it could represent
slope processes in moving debris (and elements)
downslope under gravity. In airborne pollutants it
could represent the prevailingwind direction. Such
underlying trends may well affect the distribution
of values and failure to consider them could pro-
duce misleading results. If the trend is not constant
but variable, such as in the case of elevation
data covering a sizeable area of terrain with, for
example, a valley running across it, the function
fitted to the data should allow for that. The as-
sumption in this instance would then be that the
mean is variable, and importantly that there is
more than one statistically independent population
present. Some methods of value estimation cannot
make such allowances.

Physical, geographic barriers that exist in the
landscape, such as cliffs or rivers, present a partic-
ular challenge when describing a surface numeri-
cally because the values on either side of the barrier
may be drastically different. Elevation values
change suddenly and radically near the edge of a
cliff and the known values at the bottom of the cliff
cannot be used accurately to estimate values at the
top of the cliff. If natural barriers are known to exist
in the data population then itwill be advantageous to
use amethod of value extraction that can selectively
use values on one side or the other. Many inter-
polators smooth over these differences by averaging
values on either side of the barrier. The inverse
distance weighted (IDW) method allows the inclu-
sion of barriers to constrain the interpolation to one
side.

15.3 Interpolation

Regardless of the quantity in question (rainfall
intensity, pollution concentrations or elevation
values), it is impossible or at best impractical to
measure such phenomena at every conceivable
location within an area. We can, however, obtain
a sample of measurements from selected locations
within that area, and from those samples make
predictions about the values over the entire area.
Interpolation is a process bywhich such predictions
are made.

The process begins with a set of sample points
containing numerical measurements recorded at

specific locations. Spatial autocorrelation is as-
sumed so that an unknown value can be estimated
from the neighbourhood of values. The aim is then
to create a surface that models the sampled phe-
nomenon so that the predicted values resemble the
actual ones as closely as possible. Adjustments to
the surface can be made by limiting the size of the
sample used and controlling the influence that
the neighbourhood of sample points has on the esti-
mated values.

Interpolation can then be described as the process
of estimating a value at a location (x, y) from
irregularly spaced, assumed or measured values at
other locations (x1, . . ., xn, y1, . . ., yn), to produce a
regularly or continuously sampled grid. It is possi-
ble to interpolate a surface from a very small
number of sample points but more sample points
will give a better result. Ideally, sample points
should be well distributed throughout the area. If
there are some rapidly changing phenomena, then
denser sampling may be needed.

15.3.1 Selecting sample size

This is an important step as it controls the neigh-
bourhood statistics from which the interpolated
values will be estimated. Most interpolation meth-
ods allow you to control the number of sample
points used, in some way or other. For example, if
you limit your sample by number, to five points for
example, for every location the interpolated value
will be estimated from the five nearest points. The
distance between each sample point varies accord-
ing to the distribution and density of the points, as
we have said, and this distance is important. Using
many points will slow the process down but will
mean that the distances between the points are
smaller, so variation between them will be lower
and the result should be more accurate. Using
fewer points will make the process faster, and
sufficient points are likely to be found, but the
prediction may not properly represent the statis-
tics of the neighbourhood. The sample size can
also be controlled by use of a search radius or
by defining the minimum number of points to be
used.

Two common approaches to sample selection are
the fixed distance method and the nearest K
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neighboursmethod (whereK is a specified number).
A fixed search radius will use only the samples
contained within the specified radial distance of the
unknownvalue, regardless of how large or small that
number that might be. The K nearest neighbour
method uses a variable search radius, which
expands until the K neighbouring points are
found. The fixed distance technique, shown in
Figure 15.4a, using a distance equal to the radius
of the circles shown, would interpolate the value at
point B using four neighbouring samples but would
find only one sample to interpolate the value at point
A. If, instead, a variable radius were used
(Figure 15.4b), then the search around point A
would have to expand considerably before four
neighbours are found.

The fixed distance approach may fail to find any
sample points and the interpolator will fail to esti-
mate a value within an area of low-density sam-
pling. This is useful only in that it will reveal areas
where there is insufficient sampling, but the resul-
tant ‘holes’ in the interpolated surface are rather
undesirable. The K nearest neighbour approach, in
contrast, will always find sample points but they
may be so far from one another (as in Figure 15.4b)
as to be unrelated and so the predicted result may
be misleading.

Clearly, the choice of method will depend on the
data, how they were collected, the desired charac-
teristics of the output grid, and the nature of the
decisions or analyses that will be performed with
the resulting grid. Once a set of neighbours is found,
the interpolator must combine their values to pro-
duce the estimate.

15.3.2 Interpolation methods

There are two broad classes of interpolator, deter-
ministic and stochastic. A deterministic process is
one where, at any specific known instant, there is
only one possible outcome. In general terms, a
stochastic process on the other hand exhibits prob-
abilistic behaviour, i.e. it can be considered the
opposite of deterministic, so that for one known
condition there are many possible outcomes, some
of which will be more likely than others. Determin-
istic interpolators create surfaces based either on the
degree of similarity between sample values (as in
the IDWmethod) or on the degree of smoothing (as
with radial basis functions (RBFs)). Stochastic
interpolators are based on the degree of autocorre-
lation between every possible combination of points
in the input dataset. It is generally considered that,
in situations where data are plentiful, stochastic
interpolation methods are superior. A summary of
different interpolation methods is shown in
Table 15.1.

15.3.3 Deterministic interpolators

The majority of deterministic interpolators are
polynomial in form, and of varying degrees of
complexity. The general form of a polynomial
function is

f ðxÞ ¼ anx
n þ an�1x

n�1 þ � � � þ a1x
1 þ a0x

0

ð15:5Þ

A
B

A
B

(a) (b)

Figure 15.4 Neighbourhood searchmethods using (a) a fixed distance and (b) a variable distance to find the K nearest
neighbours, to estimate two points located at A and B
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where x is the input value, the number of terms is
variable and each term consists of two factors
(a real number coefficient a and a non-negative
integer power n). The degree or order of a
polynomial function is given by the highest value
of n.

Global polynomial interpolators use a polynomi-
al function to construct a very simple surface from
all the sampled point values, i.e. no neighbourhood
is specified, and so smoothes over all local varia-
tions. First-, second-, third- or fourth-order poly-
nomials, and so on, can be used to represent surfaces
of increasing complexity. A smooth plane is created
with a first-order, a surface with one bend or fold is
made by a second-order, and one with two bends or
folds by a third-order polynomial. Since the surface
is relatively rigid it will not honour the data, i.e. it
will not necessarily pass through all the data
point values. Global polynomial interpolators are
often referred to as ‘inexact’ interpolators for this
reason.

For a set of sample points representing surface
elevations, shown in Figure 15.3b, the result of
interpolating using a first-order global polynomial
is shown in Figure 15.5a.

If a specific neighbourhood is then selected, the
result becomes equivalent to a local polynomial
interpolator. Local polynomial interpolation cre-
ates a surface using functions unique to a sample
neighbourhood. By controlling the number of
points, the shape of the neighbourhood and the
location of the points within the neighbourhood
(i.e. the sector configuration), even more control
is enabled. In this way the interpolation can bemade
to behave in a more (or less) local manner. The
process is a little like convolution filtering, in that a
function is fitted to the values in a neighbourhood to
derive an estimated value for that unknown location.
The interpolator then shifts to the next unknown
location and the process is repeated until a grid of
estimated values is built up. Figure 15.5b shows the
result of local polynomial interpolation for the same
group of points. As with the global interpolator,
selection of first-, second-, third-order, and so on,
polynomial functions allows more complexity to be
allowed for in the predicted surface except that these
are fitted within the local neighbourhood. Hence if
the neighbourhood size is increased to the point
where it includes all the data points, the result will
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be equivalent to a global polynomial interpolator
(Figure 15.6).

By adding more orders to the polynomial, it can
bemade to fit almost any data distribution, but if the
data are not that complex, then why bother going to
such effort when a simpler onewould be quicker and
more appropriate? If you have to work so hard as to
make the function fit the data, that extra effort may
not really providemuch additional information, and
perhaps this is telling you something about the data
you have overlooked, such as the presence of an
underlying trend and/or more than one population.
Generally speaking, and for these reasons, the first
and second orders of the polynomial are considered
to be the most indicative and significant in fitting to
the data and they are in fact estimates of the first-
and second-order trends of the data.

RBFs and splines generate surfaces using a piece-
wise function which can be thought of as a flexible

membrane rather than a rigid plane, stretched
between the sample points, of which the total
curvature is kept to a minimum but is variable
(Figure 15.7). Variable weights are used to control
the flexibility and curvature of the interpolated
surface. The surface passes through every sampled
point, and so spline functions can be described as
being ‘exact’ interpolators. The stretching effect is
useful as it allows predicted values to be estimated
above the maximum or below the minimum sam-
pled values, so that highs and lows can be predicted
when they are known to exist but are not represented
in the sample data.

When sample points are very close together and
have extreme differences in value, spline interpola-
tion is less effective because it involves slope cal-
culations and honours the data. High-frequency
changes in value, as caused by a cliff face, faults
or other naturally occurring barriers for example,

Figure 15.6 Surfaces constructed from the sample points shown in Figure 15.3b, using (a) global polynomial and
(b) local polynomial functions

Figure 15.5 (a) A first-order global polynomial surface profile. The planar surface (black line) does not pass through
the sampled points and reflects only the gross scale pattern of the data. (b) A local polynomial surface profile. The
surface is no longer planar but has flexure; it still does not pass through all the data points
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are not represented well by a smooth-curving sur-
face. In such cases, the IDW method may be more
effective.

Several types of spline interpolator can be found
in most GIS suites: tension, thin-plate (minimum
curvature), regularized, multi-quadric and inverse
multi-quadric splines. A tension spline is flatter and
more rigid than a regularized spline of the same
sample points – it forces the estimated values to stay
closer to the sampled values. The behaviour of a
regularized spline is more flexible and elastic in

character (it has greater curvature). Interpolated
surfaces generated from the points in Figure 15.3
are shown in Figure 15.8.

The spline interpolation process can also be
weighted. The simplest form of RBF is a weighted
linear inverse distance function as follows:

zp ¼
Xn
i¼1

lizi ð15:6Þ

where zp is the estimated value of the interpolated
surface at a point p, and li are the data weights.

The form of a tension spline can be expressed by

wðrÞ ¼ lnðcr=2Þþ l0ðcrÞþ g ð15:7Þ
where w (r) is the RBF used, r is the distance
between the point and the sample, c is a smoothing
parameter, l0() a modified Bessel function and g is
Euler’s constant (g ¼ 0.577). The modified Bessel
function is given by

l0ðcrÞ ¼
X¥
i¼0

ð�1Þiðcr=2Þ2i
ði!Þ2 : ð15:8Þ

Figure 15.8 Surfaces constructed from the same set of sample points, shown in Figure 15.3b, using (a) regularized;
(b) tension; (c) multi-quadric; and (d) thin-plate splines. The differences between these are subtle, with surfaces in (c)
and (d) being noticeably smoother than those in (a) and (b)

Figure 15.7 Profile view of a theoretical surface con-
structed with a typical spline interpolator
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The general form of a regularized spline can be
described by

wðrÞ ¼ lnðcr=2Þ2 þE1ðcrÞ2 þ g ð15:9Þ
where E1() is an exponential integral function given
by

E1ðxÞ ¼
ð¥
1

e�tx

t
dt: ð15:10Þ

A multi-quadric spline is defined as

wðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
ð15:11Þ

and a thin-plate spline as

wðrÞ ¼ c2r2 lnðcrÞ: ð15:12Þ

In the regularized type the predicted surface
becomes increasingly smooth as the weight value
increases. With the tension type, increasing the
weight produces a more rigid surface, eventually
approaching a linear interpolation between sample
point values. Splines cannot assess prediction error,
cannot allow for SAC and do not involve any
assumptions about the stationarity of the data.

Minimum curvature spline interpolation has
been used for the ‘gridding’ of multi-element geo-
chemical sample points in Greenland, within a
multi-criteria evaluation of mineral prospecting in
Section 22.1.

15.3.3.1 Inverse distance weighted
average

The IDW average is a localized interpolator that
predicts values through averaging, as its name
suggests, but allows variable weighting of the
averages according to the distances between the
points, using a power setting. The weights are
exponents of distance and are largest at zero dis-
tance from a location and decrease as the distance
increases. For a position x, and for i to n data points
with zknownvalues, the unknownweighted average
(z(x)) is derived as

zðxÞ ¼

X
i

wiziX
i

wi

: ð15:13Þ

Reducing the weight produces a more averaged
prediction because distant sample points become
more and more influential until all sample points
have equal influence (Figure 15.9a). Increased
weight or power means that the predicted values
become more localized and less averaged, but the
influence of the sample point decreases more rap-
idly with distance (Figure 15.9b). The weights are
commonly derived as the inverse square of distance,
so that the weight of a point drops by a factor of 4 as
the distance to a point increases by a factor of 2. For
the sample points shown in Figure 15.3, surfaces
interpolated by IDW, with low and higher power
setting, are shown in Figure 15.9.

Figure 15.9 Surfaces constructed from the same set of sample points, shown in Figure 15.3b, using (a) IDWwith a low
weight setting; (b) IDW with a high weight setting; and (c) with break-lines. The interpolated grids in (a) and (b) were
produced using ArcGIS’s Geostatistical Analyst and in (c) using ArcGIS’s Spatial Analyst; the ‘bullseye’ pattern is
visible in all three grids
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Since the IDW is an averaging technique, it
cannot make estimates above the maximum or
below the minimum sample values, and as a result
the predicted surface will not pass through the
sample points, so it can be referred to as an ‘inexact’
interpolator. In a surface representing elevation, for
example, this has the effect of flattening peaks and
valleys unless their high and low points are actual
sample points (see Figure 15.10).

One advantage of this method is that barriers can
be incorporated to restrict the predictions, geo-
graphically, if structures are known to exist which
affect the shape of the surface. Sample points on one
side of a barrier are excluded from the interpolation
even if they are near to the prediction location (see
Figure 15.11). In this way the IDW is prevented
from averaging across significant structures.

The IDW is most effective with densely and
evenly spaced sample points. It cannot account for
any directional trends in the data, and so the inter-
polated surface will average across any trend rather
than preserve it. It is perhaps useful as a ‘first
attempt’ when little is known about any complexi-
ties which may exist. It does not involve the assess-
ment of prediction errors or allow for SAC, and the
weighting tends to produce ‘bullseyes’ around sam-
ple point locations.

15.3.4 Stochastic Interpolators

15.3.4.1 Kriging
The kriging method was first developed by
Matheron (based on the work of Krige, 1951). It

is a method of estimation based on the trend and
variability from that trend. Variability, in this con-
text, refers to random errors about the trend or
mean. In this context, ‘error’ does not imply a
mistake but a fluctuation from the trend, and
‘random’ implies that the fluctuation (error) about
the trend is unknown and is not systematic; the
fluctuation could be positive or negative. Kriging
may be considered exact (or smoothed) or inexact.
Kriging incorporates the principles of probability
and prediction, and like the IDW, is a weighted
average technique except that a surface produced
by kriging may exceed the value range of the
sample points while still not actually passing
through them. Various statistical models can be
chosen to produce four map outputs (or surfaces)
from the kriging process. These include the inter-
polated surface (the prediction), the standard
prediction errors (variance), probability (that the
prediction exceeds a threshold) and quantile (for
any given probability).

Simplistically, all forms of kriging are based on
the following relationship:

zxy ¼ mxy þ exy ð15:14Þ

where zxy is the predicted surface variable (at loca-
tion xy), mxy is the deterministic mean or trend of the
data and exy is the spatially autocorrelated error
associated with the prediction.

Figure 15.11 Schematic representation of sample poi-
nts lying across an abrupt change in values, such as
might be caused by a cliff within elevation data. The
IDW interpolator allows incorporation of vector break-
lines (green line) to constrain the interpolation process,
so that only points on one side (red dots) are used to
estimate the output value (white pixel)

Figure 15.10 Profile view of a theoretical surface cons-
tructed with an IDW interpolator: the black line repre-
sents the surface generated with a lower weight setting;
the grey line represents that produced with a higher
weight setting (compare with Figure 15.9a and b)

CH15 EXTRACTING INFORMATION FROM POINT DATA: GEOSTATISTICS 207



The general form of kriging can be defined as

f̂ ðzoxyÞ ¼
Xn
i¼1

wi f ðzixyÞ ð15:15Þ

where the function determines the output prediction
value of a location so that f̂ ðzoxyÞ is the predicted
output value and is aweighted linear combination of
the input values (ranging from i to n), and wi refers
to the weight for the ith input value.

So the predicted surface value at any position is a
function of the trend and the deviation from that
trend. The differences between the different forms
of kriging can be explained in reference to this
relationship.Ordinary kriging assumes an unknown
but constant mean, i.e. mxy¼m at all locations, so
there is no underlying trend to the data, and that the
sample values are random (spatially autocorrelated)
errors about the unknown mean (Figure 15.12a). In
situations where there is a trend and the mean is no
longer constant, the trend is represented as a linear
or nonlinear regression; this is the basis of universal
kriging, which assumes a varying but still unknown
mean and that the sample values are random (spa-
tially autocorrelated) errors about the mean
(Figure 15.12b). In contrast, simple kriging assumes
that themean is known in advance and that it may be
constant or variable. Indicator kriging involves the
use of other transformations, f(zxy), applied to the
predicted value rather than the sample value, such
that the predicted values are signed (0 or 1) repre-
senting the probability that the surface value will
exceed or fall below a specified threshold: 1 if the
value is above the threshold, 0 if below. This may be
useful if predicting values on which rigid decisions

will be made, such as whether chemical substances
are in high enough concentrations towarrant an area
being classified as contaminated or not. It can be
thought of as a combination of kriging with reclas-
sification, and forms an area of overlap with multi-
criteria evaluation. Disjunctive kriging forms a
development of this approach in which a series of
possible transformations is searched to predict the
function of f(zxy).

Kriging assumes stationarity in the data and in
somemethods that the data are normally distributed.

15.3.4.2 Co-kriging
Where kriging involves interpolation of a single
variable, co-kriging involves the simultaneous in-
terpolation of more than one variable. As a result,
co-kriging allows the derivation of cross-correlation
as well as SAC, and is given as aminormodification
of (15.13):

zixy ¼ mi
xy þ eiixy: ð15:16Þ

In this way, different trends and SAC can be
considered for each of the i variables. This may
be useful if you do not have equal number of sample
points for all variables and need to share values; the
prediction can be made from the values of both
variables and from the correlation between them.
For instance, if you have multi-element geochemi-
cal data for samples collected by different ground
sampling strategies (rock in situ samples, rock
transport, sediment, etc.) but not many samples for
any single collection method, it may be useful to
interpolate the concentrations from all available
sample types for a particular element. Care must

Figure 15.12 Ordinary and universal kriging (illustrating constantmean and varyingmean). (a) Ordinary krigingwith
a constant mean (no trend) when the mean value is not known in advance; and (b) universal kriging in which there is a
trend in the data, but the terms of its function are not known
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be taken, however, to ensure that the combination of
sample points is conceptually meaningful (i.e., that
the two sample types being combined represent the
same or comparable phenomena). Alternatively, if
particular associations of elements are indicators of
some phenomena of interest, co-kriging using those
elements and evaluating the relationships between
them (and their error patterns) may be very reveal-
ing. Here again there is an overlap with multi-
criteria evaluation and decision making.

All the forms of kriging product are also pro-
duced by co-kriging, creating ordinary co-kriging,
universal co-kriging, simple co-kriging, indicator
co-kriging and disjunctive co-kriging.

15.4 Summary

The significant aspects to take away from this
chapter include the importance of knowing your
data from the start, understanding their make-up
and provenance, and so to make the best choice of
interpolator. Understanding how the data were
collected, recorded and measured, point to what
they represent, or, importantly, what they do not
represent, ‘on the ground’. This is essential to the
understanding of any statistics derived from the
data. Realizing the existence of populations within
the data is important when interpolating, since
treating the data as a single population when in
fact there are several could produce meaningless
results and could mean the underestimation of
calculations or forecasted quantities. Similarly,
determining how points are selected for the inter-
polation process can have significant effects on the
validity of the result.

In terms of control over the interpolation process,
RBFs or splines can be considered more flexible
than the IDWand less flexible than kriging, but it is
the distribution and quantity of your data which
should dictate the kind of interpolation you use
rather than the convenience of the tools. In general,

when data are plentiful, geostatistical methods give
better results and, unlike the simpler methods, do
not treat noise as part of the data.

This chapter also touches on the conversion of
vector point data into a raster representation; that is,
estimating values where none exist. There are also
instances where the concepts here have elements in
common with decision making, multi-criteria eval-
uation and spatial analysis.

Questions

15.1 What methods of sample selection are avail-
able? What potential effects of the methods
used?

15.2 What are the advantages and potential dangers
of using interpolation?

15.3 Underwhat circumstancesmight you decide it
was not appropriate to use interpolation?

15.4 When are spline interpolation methods most
and least useful?

15.5 Why would you need to include barriers in
interpolation methods?

15.6 What are the differences between kriging and
other weighted methods of interpolation?
When is kriging not likely to givebetter results
than any other types?

15.7 Why is it important, in kriging, to have a
thorough understanding of the variance (and
variogram) of the data?

15.8 Why is it worth using interpolated data (think
about explaining this to a decision maker)?

15.9 Consider some applications and decide which
interpolation methods would be most appro-
priate – such as assessing the probability of
geochemical contamination from regularly
spaced soil samples, or estimating the produc-
tion of a mineral commodity, using geochem-
ical data derived from various samples of rock
and sediment collected from several levels
within a mine.
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16
Representing and Exploiting Surfaces

16.1 Introduction

A surface models a phenomenon that varies conti-
nuously across an area, such as elevation. Since the
phenomenon could represent precipitation, temper-
ature or magnetic susceptibility, or any variable, a
more general term could be a statistical surface
because the surface describes the statistical repre-
sentation of themagnitude of that variable. Surfaces
provide the ‘height’ information, or z values, nec-
essary both for spatial analysis and for 3D visuali-
zation, in the form of either raster DN values or the
nodes of a Triangulated Irregular Network (TIN).

This chapter concentrates on the use of raster data
since their structure lends itself to terrain analysis,
allowing the description and quantification of ter-
rain morphology and the extraction of surface para-
meters in amore uniform, regularmanner than from
a vector surface. This chapter also deals with the
visualization of information which has an implied
3D quality within a 2D environment, e.g., on a map,
the visualization of information within a simulated
3D environment, and the exploitation of surface
data to derive parameters that quantify the 3D
environment and are usefulwithin the broader scope
of spatial analysis. When talking about raster data
visualization, image processing techniques are em-
bedded by default.

16.2 Sources and uses
of surface data

Methods of surface description using raster
and vector models have been mentioned earlier in
Chapter 11. Primary sources of surface data include
point surveys, photogrammetry using stereo imag-
ery or aerial photography, interferometry from
radar imagery, and altimetry. Surfaces can also be
produced by the digital capture of contours from
analogue maps (and secondary conversion to a
surface) and by interpolation from survey points.
Wewill not dwell on the use of contours (as these are
familiar concepts which have been dealt with in
many other texts) and interpolation from point data
has already been dealt with in Chapter 15.

16.2.1 Digital Elevation Models

‘Digital Elevation Model’ or DEM is a term used
to described a representation of a continuously
sampled surface representing ground surface height
above a datum. A DEM generally represents the
uppermost level of a surface feature, including
vegetation canopies and buildings; it does not nec-
essarily represent the ground surface level of the
Earth. If this is required, the DEMmust bemodified
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to remove any such building and tree canopy
heights. And when this is achieved, the product
may be described as a ‘bare Earth model’, Digital
Terrain Model (DTM) or Digital Surface Model
(DSM). The term ‘bare Earth’ can refer to either the
DEM or the extracted contours, from which the
effects of objects such as buildings and tree cano-
pies have been removed, leaving only ground sur-
face elevation values. The production of the DTM
from the DEM requires either post-processing to
correct to a bare Earth model, or calculation from
the raw acquired elevation data, as in the case of
laser altimetry where the collected data represent
complex information containing the
uppermost surface and ground-level elevations
(and any other objects in between). For the sake
of simplicity in this chapter we will stick to the
acronym ‘DEM’ as a generic term in reference to all
forms of digital elevation data.

A DEM is therefore a digital data file consisting
of terrain elevations for ground positions at regular-
ly spaced horizontal intervals. DEMs may be used
aesthetically or analytically; they can be used in
combination with digital images and vectors to
create visually pleasing and dramatic graphics or
for the calculation of various surface parameters
such as terrain slope, aspect or profiles.

One potentially misleading issue relates to the
term ‘continuous’ which is frequently used to de-
scribe raster data. It is more correct to describe the
model as being ‘continuously sampled’ at discrete
intervals rather than truly continuous in nature.
Its ability to represent a surface depends on its
spatial resolution and the complexity of the ground
surface being represented. It is widely accepted that
all natural surfaces are fractal in nature, so that at
anyparticular scale, therewill always bemore detail
than we can observe. We must therefore accept that
the resolution of the data implies the level of detail
that we can work with. The most important factors
to be considered prior to the use of DEMs therefore
include the planimetric and altimetric accuracies of
the source data, the quality and quantity of both the
source data and ground control data, the level of
terrain complexity, the output spatial resolution as
well as the algorithm used to generate the DEM.

The many processes of DEM generation are the
subject of a great breadth of research and are
covered in great detail in other texts. The technical

details of such procedures are not within the scope
of this book and so we give only a brief overview
here.DEMs can conveniently be subdivided accord-
ing to source data, method of generation and/or
mapping scale of application; here we have chosen
to group them according to the generation method.
The primary generation of surface information can
be achieved through photogrammetry (from stereo
images), altimetry and laser altimetry (LiDAR) and
SAR interferometry (InSAR).

16.2.1.1 Photogrammetry
Photogrammetry is the process of obtaining reliable
3D measurements of physical objects and the envi-
ronment frommeasurementsmade from twoormore
photographs or images (Wolf andDewitt, 2000). The
photographs or images must have been acquired
from different positions with sufficient overlaps, i.e.
stereoscopically. Two forms of photogrammetry
can be identified: metric and interpretative. The
former refers to the quantitative measurement and
analysis of objects for the purpose of calculating
dimensions, including elevation and volume. The
latter refers to themore qualitative interpretation and
identification of objects and structures through ana-
logue stereoscopy,with the aimof better understand-
ing their relationships with their surroundings.

Elevation data can be derived photogrammetri-
cally froma number of readily available data sources
(airborne or spaceborne) such as stereo areal photo-
graphy, ASTER, Ikonos, SPOT, EROS, Orbview,
Topsat, WorldView and, most recently, the ALOS
and GeoEye1 satellite sensors. The height accuracy
of models generated in this way depends mainly on
the base to height ratio (B/H) and the accuracy of the
parallax approximations. The sensor specifications
of these instruments are given in Appendix A.

ASTER (Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer) provides along-
track stereo capability in addition to its spectral
and spatial capabilities. It consists of three sub-
systems in the visible and near-infrared (VNIR),
short-wave infrared (SWIR) and thermal infrared
(TIR) regions, with 15m, 30m and 90m resolu-
tions respectively. The VNIR subsystem contains
two independent telescope arrays: one at nadir (i.e.
vertical looking) and a second, backward-looking
telescope. These two arrays provide the along-
track stereo image geometry, with a base to height
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ratio of 0.6, and an intersection angle of 27.7�.
ASTER data are relatively inexpensive (per km2)
and a full scene covers an area of 60� 60 km.
ASTER DEMs can be produced at 15, 30 or
60m resolutions and are suitable for mapping at
a scale of about 1 : 50 000 (Welch et al., 1998).
ASTER is, however, and rather unfortunately,
approaching the end of its working life; we await
news of its replacement.

SPOT (Satellite Pour l’Observation de la Terre):
Stereo pairs from SPOT 2–4 are acquired from
cross-track imaging with sensors viewing the same
area off nadir (see Appendix A). The data can be
used to produce 10mDEMs, while data from SPOT
5 enables 5m DEMs to be generated. The SPOT 5
HRS sensor routinely acquires large volumes of
stereo data, so that DEM products can be obtained
on a ‘per unit area’ basis. Relative DEMs (i.e.
produced using no ground control data) of small
areas of interest can be produced, which have
planimetric accuracies of �30m. The accuracy of
absoluteDEMsvaries according to the quality of the
ground control data but may be between 15m and
30m (planimetric) and 10–20m (altimetric).

Ikonos: Cross-track stereo Ikonos images (1m
panchromatic and/or 4m multi-spectral) are ac-
quired at off-nadir angles of up to 60� in any
direction. The sensor has 360� pointing capability,
can acquire stereo images between latitudes of
�82� and can achieve base to height ratios of 0.6
or more (similar to those typical of aerial photogra-
phy). Planimetric and altimetric accuracies range
between 1m and 2m (depending on the accuracy of
the ground control).

The GeoEye1 VHR sensor launched in Septem-
ber 2008 is similar to Ikonos but with some minor
wavelength modifications, slightly wider swath
and off-nadir spatial resolutions of 0.41m (in pan-
chromatic mono and stereo modes) and 1.64m
(multi-spectral mode). It is capable of viewing and
imaging in any direction; with off-nadir look angles
of 10�, 28� and 35� it can acquire cross-track stereo
imagery with a horizontal error of 2m (circular
error (CE), i.e. error in all directions) or 3m (linear
error)with no ground control. It also provides revisit
times of between 2.1 and 8.3 days, depending on the
viewing angle.

The WorldView-1 VHR sensor is capable of
along-track stereo data acquisition, collects pan-

chromatic imagery at 0.5m spatial resolution and is
capable of acquiring imagery with accuracies of
between 4m and 5.5m CE at nadir.

The ALOS (Advanced Land Observing Satellite)
sensor assembly carries the Panchromatic Remote-
sensing Instrument for Stereo Mapping (PRISM)
which is capable of acquiring along-track stereo
imagery using three optical devices that point for-
ward, nadir and aft, and at a spatial resolution of a
fewmetres (2.5m at nadir). The advantage of three-
way stereo is to minimize occlusion.

Stereo aerial photography: The resolution of
DEMs derived from aerial photography can vary
greatly according to the flight height, camera
quality and imaging configuration. Aerial photo-
graphs are now collected using high-resolution
digital cameras, and with onboard Global Position-
ing System (GPS) devices to georeference the
acquired data and with inertial navigational units
(to record and subsequently correct for the roll,
pitch and yaw of the platform). Unmanned airborne
vehicles (UAVs) are also now increasingly being
used tomap large areas at very high resolutions, and
in stereo.

16.2.1.2 Laser altimetry
Surfaces can be generated from laser altimetry or
light detection and ranging (LiDAR) data, which
may be acquired from satellite or airborne plat-
forms. Airborne LiDAR has somewhat revolution-
ized the acquisition of high-accuracy DEM data for
large-scale mapping applications.

A LiDAR system transmits pulses of light which
reflect off the terrain and other ground objects.
The receipt of laser pulses is continuous and so the
first and last returned pulses can be extracted to
differentiate between canopy elevations and true
ground or bare Earth elevations. The return travel
time of a laser beam is measured from the source
instrument to the target and back; the distance is
then computed (using the known speed of light) to
give the height of the surveyed ground position.
An airborne LiDAR system typically consists of a
laser scanning instrument, a GPS and an inertial
navigational unit. Airborne LiDAR derives height
elevations with accuracies of between 10–15 cm
(altimetric) and 15–30 cm (planimetric).

With the same ranging principle, airborne radar
altimeters and barometric altimeters are also used to
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map terrain. The radar altimeter height can then be
subtracted from the barometric altimeter height to
give surface elevation with respect to sea level.

Some LiDAR datasets are available as off-the-
shelf products, from satellite sources such as ACE,
a 1 km(30arc second)DEM,globally available from
De Montfort University (see online resources).
These are generally low-resolution products aimed
at small-scale regional applications. Airborne
LiDAR surveys are normally bespoke and relatively
expensive to commission and are therefore not likely
to be freely available in the foreseeable future.

16.2.1.3 SAR interferometry
The theoretical basis for interferometric derivation
of elevation from SAR data has already been de-
scribed in some detail in Chapter 10, so we have no
need to dwell on this here. InSAR DEMs can be
generated from SAR imagery acquired by the ERS,
ENVISAT, RADARSAT and ALOS satellites. The
unique advantage of the InSAR DEM is its all-
weather capability. It can penetrate clouds under
conditions where all optical-sensor-based technol-
ogy cannot operate.

One very well-known and widely used such
InSARDEM dataset was produced during the Shut-
tleRadar TopographicMission (SRTM). SRTMwas
flown during the year 2000, onboard the Space
Shuttle Endeavour, when topographic data of
roughly 80% of the Earth’s land surface (between

latitudes 60�N and 60�S) were generated and then
gridded at 90m (a higher resolution product is
available for the United States). The stated absolute
planimetric and altimetric accuracies of the 90m
DEMs are 20m and 16m respectively. The SRTM
product is ideal for regional mapping, typically at
scales of between 100 000 and 150 000.

16.2.2 Vector surfaces and objects

As described earlier in Chapter 12, TINs represent
surfaces using a set of non-overlapping triangles
that border one another and vary in size and form.
TINs are created from input points with x, y co-
ordinates and z values. The input points become the
triangle vertices (nodes) and the vertices are con-
nected by lines that form the triangle boundaries
(edges), as illustrated in Figure 16.1. The final
product is a continuous surface of triangles, made
of nodes and edges. This allows a TIN to preserve
the precision of the input data while simultaneously
modelling the values between known points. Any
precisely known locations such as spot heights at
mountain peaks, or road junctions, can be described
and added as input points, to become new TIN
nodes. TINs are typically used for high-precision
modelling, in small areas, such as within engineer-
ing applications, where they are favoured because
they honour the data.

Figure 16.1 (a) Individual triangular face of a TIN, defined by the 3D coordinate positions of the three points. The
slope and aspect of each face are constant for each triangular face, and are calculated when the TIN is generated. The
elevation of any position is then interpolated from its position with respect to the points and edges of the triangular
face. (b) The 3D vector feature formed by projection of vertices using stored attribute (z) values; these values could
represent either the base-level elevation of the object or the object’s height above ground level or any other quantity
described in the attribute table
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Once the TIN is constructed, the elevation of any
location is interpolated from the x, y, z coordinates
of the bounding triangle’s vertices. The slope and
aspect are constant for each triangular face and
calculated during TIN construction (Figure 16.1).

Since elevation, slope and aspect are built into the
structure of a TIN, they can very easily be displayed
simply by symbolizing the TIN faces using these
attributes. Four different edge types are stored
within TINs; these may be referred to as hard edges
(representing sharp breaks in slope or elevation), soft
edges (representing gentle changes in slope), outside
edges (generated automatically when the TIN is
created, to constrain or close the outer triangles),
and regularedges (all remaining edges other than the
hard, soft or outside).ATINsurface can be displayed
merely as edges, nodes or faces, or as combinations
of these features, to enable the surface to be inter-
preted and any potential errors identified.

16.2.2.1 3D vector features
Capitalizing on the TIN method of height represen-
tation, ordinary 2D vector features (points, lines or
polygons) can be displayed in a 3D environment,
on, above or beneath a surface. A 3D display
requires height information but vector features may
or may not have such information in their attribute
tables. Truly 3D vector features have z values stored
in their attribute tables but 2D vector features can
also be visualized in 3D space by exploiting the
height information of other data layers. The eleva-
tions are then calculated for the x and y positions of
the vector feature’s vertices and used to project
them vertically. These heights, exploited from other
layers or otherwise, are generally assumed to define
the base level or ground height of the object.

A feature may of course store further attributes
which represent the height of the object above
ground level, such as building height, or any other
quantity. A feature which contains, in addition to its
x, y coordinates, one or more z values as part of its
geometry is referred to as a 3D vector feature.
At their simplest, 3D points have one z value; 3D
lines and polygons have a z value for each vertex
defining the object. Buildings and other, far more
complex structures can then be modelled by ex-
tending this concept.

VRML (Virtual Reality Modelling Language)
was developed as a standard file format for storing

and displaying 3D vector graphics. This has been
superseded by X3D, which is now an ISO standard;
both formats use standard XML syntax. The devel-
opment of 3D vector models and vector topology
is a very active area of research and one which is
outside the scope of this book.

16.2.3 Uses of surface data

Surface data have a great many potential uses in
many application areas. They are commonly used
as relief maps to convey 3D information within the
2D environment and they are essential for 3D
visualization. DEMs are also required for the
ortho-rectification of optical images and for making
terrain corrections to radar and gravity survey data.
They also form a valuable data source for the
calculation of descriptive surface parameters, for
flow modelling (such as of water and mass move-
ments), for geomorphological terrain analysis and
for the calculation of other engineering, hydrologi-
cal and hydrogeological indices.

Elevation models are used in applications over
a growing range of scales, from global, meso and
topo (conventional mapping scales) to micro and
nano scales (very small-scale measurements), and
within a diverse range of disciplines – meteorologi-
cal, geological and geomorphological, engineering,
biological and architectural. At the micro and nano
scales, close-range photogrammetry is now a rap-
idly developing science. Examples in these fields
include the micro-scale analysis of the terrain of
stream beds, to reveal the physical characteristics of
habitats occupied by small organisms such as fish
and crustaceans, and the analysis of rock fracture
surfaces for modelling fluid flow or of the frictional
properties affecting rock strength.

16.3 Visualizing surfaces

GIS visualization tools, in both two and three
dimensions, rely on the ability to share and integrate
data, models and interpretations. The simplest form
of visualization involves the display of 2D images
with conventional cartographic symbols. For in-
stance, the geological map can be recreated using
conventional geological symbology, which can
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easily be incorporated within GIS, through the use
of special fonts. Thus structural information, for
instance, can be presented to give the appearance of
a published geological map.

GIS also bridges the gap between 2D and 3D
displays (and analysis). This is especially useful in
geosciences, because depth is such a fundamental
consideration and the integration of sub-surface
data has become an essential part of any digital
mapping technology.

Visual exploration and interrogation, in several
dimensions, facilitates enhanced understanding
of structures and relationships. Virtual field visits
become a routine activity and are vital in assisting in
logistical planning and to improve understanding
prior to setting foot in the field, thus saving valuable
time and reducing risks. All GIS software provides
2D and 3D tools for the manipulation of surfaces,
images and maps in pseudo 3D space and for the
mathematical derivation of other products, such as
slope angle, aspect or azimuth, curvature, line of
sight, watersheds and catchments. Examples of
software providing excellent 3D manipulation and
viewing capabilities are ERDAS Imagine’s Virtual
GIS, ER Mapper, ArcGIS 3D Analyst, MapInfo
Vertical Mapper and Geomatica Fly.

16.3.1 Visualizing in two dimensions

Appreciation of a 2D representation of the truly 3D
physical landscape requires some level of interpre-
tation and imagination but conventional flat maps
do not make such appreciation very easy. Cartogra-
phy has traditionally made use of a range of visual
symbols to show height information and create the
illusion of an undulating surface: elevation con-
tours, spot height symbols, hill shading and cliff and
slope symbols. GIS allows much more through the
simulation of the 3D environment but we often still
need to use 2D output to convey the results of our
efforts. Again GIS cleverly provides us with the
ability to visualize 3D quantities and objects within
a 2D medium, through the use of shaded relief or
hillshades and contours.

16.3.1.1 Contours
Contour lines are the more familiar and mathe-
matically more precise way of representing surface

information but they are not visually powerful.
A contour is a line connecting points of equal sur-
face value. Contour lines reveal the rate of change
in values across an area for spatially continuous
phenomena. Where the lines are closer together, the
change in values is more rapid. They are drawn at a
specified interval, which represents the interval as
simply the change in z value between the contour
lines. For example, a contour map of precipitation
with a contour interval of 10mmwould have contour
lines at 10, 20, 30 and so on. Each point on a
particular contour line has the same value, while a
point between two contour lines has a value that is
between the values of the lines on either side of it.
The interval determines the number of lines that will
be on a map and the distance between them. The
smaller the interval, themore lineswill be created on
the map. A base contour may also be specified, as a
starting point; this is not the minimum contour, but
refers to a startingpoint fromwhich contours go both
above and below, based on the contour interval. For
example, the base contour may be set to 0 and the
interval may be set to 10. The resulting contour
values would be�20,�10, 0, 10, 20 and 30.Watson
(1992) provides a comprehensive description of the
concepts of all forms of surfacemodelling, including
algorithms for contouring and surface generation.

16.3.1.2 Shaded relief or hillshading
Hillshading is a technique used to create a realistic
2D view of terrain by simulating light falling on a
surface from a given direction and simulating the
shadows this creates. It is often used to produce
visually appealing maps that are easier to interpret.
Used as a background, hillshades provide a relief
over which both raster data or vector data can be
displayed.

There are three types of hillshading: slope shading
where tonal intensity is proportional to the angle of
slope (e.g. the steeper the slope, the darker the tone);
oblique light shading where the pattern of light and
dark on the surface is determined by a simulated
oblique light source; and combined shading which
represents the combination of these two types.

Contours and hillshading are quite often used
together since they complement one another: hill-
shading provides a qualitative impression of the
terrain, while contours show quantitative height
information but only for discrete locations.
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Oblique light shading involves the simulation of
the oblique illumination of a surface by defining a
position (angle and height) for an artificial parallel
light source and calculating a brightness value
for each position, based on its orientation (on the
basis of slope and aspect) relative to the light source.
The surface illumination is estimated as an 8 bit
value in the range between 0 and 255, based on a
given compass direction relative to the Sun and an
altitude above the horizon. Analytical oblique light
hillshading estimates the brightness based on the
angle between the selected illumination direction
(vector) and the surface normal vector (see
Figure 16.2).

Conceptually, the illumination vector is defined
by two angles, an angular attitude relative to north,
or azimuth (given as a compass direction between 0�

and 360�), and an altitude (given as a horizontal
angle between 0� and 90�). The surface normal (SN)
is a vector perpendicular to a surface, as defined
in the raster case, by a pixel and its closest
eight neighbouring grid cells (as illustrated in
Figure 16.2b). The DN value assigned to the output
pixel will be proportional to the cosine of the 3D
angle between the surface normal and the illumina-
tion vector (shown as a in Figure 16.2a) – a tech-
nique originally suggested by Wiechel (1878).
So for slopes almost normal to the illumination
direction, the angle will be very small, the cosine

value large and the estimated brightness proportion-
ally high.

There are a number of ways of calculating this
from a raster surface. The altitude and azimuth
of the illumination source and the slope and
aspect angles of the pixel being evaluated are
needed. From these parameters, hillshade (h) can
be calculated as follows (where all angles are in
radians):

h ¼ 255½ðcosðzaÞðcosðslopeÞÞÞ
þ ðsinðzaÞsinðslopeÞcosðaz� aspectÞÞ�

ð16:1Þ

where za is the zenith angle and az the azimuth
angle. Altitude is normally expressed in degrees
above the horizontal but the formula requires the
angle to be defined from the vertical, i.e. the zenith
angle (za) which is measured between the overhead
zenith and the illumination direction (see
Figure 16.2a). It represents the 90� complement of
altitude. The azimuthal angle of the illumination
must be changed from its compass bearing to a
mathematical unit (maz), i.e. maz¼ 360� � az þ
90�, and if this angle is greater than or equal to
360�, then maz� 360�. Note that formula (16.1) is
essentially the same as (3.27) introduced in
Section 3.7.1 for true Sun illumination.

Figure 16.2 (a) Slope geometry for computation of hillshades and (b) illustration of the SN for a raster surface.
SN is perpendicular to the average cross-product e of ab and cd, which approximates the surface area occupied by the
pixel, depending on the resolution. Modified after (a) Reichenbach et al. (1993) and (b) Corripio (2003)
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The x, y, z values of the vectors along the sides
of the central pixel, a, b, c and d, in Figure 16.2b are
given by

a ¼ ðp; 0; dzaÞ; where dza ¼ ziþ 1;j � zi;j

b ¼ ð0; p; dzbÞ; where dzb ¼ zi;jþ 1 � zi; jþ 1

c ¼ ð� p; 0; dzcÞ; where dzc ¼ zi; jþ 1 � ziþ 1; jþ 1

d ¼ ð0; � p; dzdÞ; where dzd ¼ ziþ 1;j � ziþ 1;jþ 1:

ð16:2Þ
The vector normal to the surface in the central pixel
in Figure 16.2b is then defined by

SN ¼ a� b
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ð16:3Þ
Simplifying 16.3, we have the cell orientation de-
fined by the heights of the central pixel corner
points:

SN ¼
0:5pðzi; j � ziþ 1; j þ zi; jþ 1 � ziþ 1; jþ 1Þ
0:5pðzi; j þ ziþ 1; j � zi; jþ 1 � ziþ 1; jþ 1Þ

p2

0
B@

1
CA:

ð16:4Þ
Once SN is derived, the 3D angle between the
surface normal and the illumination vector can be

calculated and the DN value assigned to the output
pixel will be proportional to cos(a). A simple
example is shown in Figure 16.3.

The values returned by hillshading may be con-
sidered a relative measure of the intensity of inci-
dent light on a slope. Suchmeasures could be useful
for many applications, such as selecting suitable
sites for particular agricultural practices or slopes
suitable for ski resorts. Hillshading of DEMs
can also accentuate faults and other geological
structures and facilitate geological interpretation.
Convolution gradient filtering can also be used to
identify linear features in remotely sensed imagery
but the result may not be as visually striking as a
shaded-relief image derived from a DEM.

When creating a cartographic hillshade for
visualization, convention dictates that the light
source is placed in the north-west (upper left)
quadrant of the map, so casting a shadow at the
bottom right of the object. The eye tends to see
objects better when the shadow is cast at the bottom
of the view; placing the light source elsewhere
creates a visual effect that makes hills look like
hollows.

16.3.2 Visualizing in three dimensions

Visualization in ‘pseudo 3D’ requires height to
convey the third dimension, whether it is topog-
raphy or some other attribute. In fact several
things are needed: the definition of the 3D coor-
dinate space, a viewing perspective, a vertical
exaggeration to control depth and (optionally) a

Figure 16.3 Simple raster example: (a) the input surface; and (b) the calculated hillshade, with 135� as the azimuth
and 45� as the altitude. The bold line in (b) encloses the nine central pixels for which hillshade values can be calculated
using the moving 3� 3 window; null values are generated around the edges and adjacent to any nulls in the input
raster, hence the two null values inside the bold line
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simulated light source, in addition to the datasets
being visualized. Certain parameters necessary
for 3D visualization are connected to the data
(base or ground elevations), while others are
temporary or virtual and control the environment
of visualization (artificial illumination and verti-
cal exaggeration).

16.3.2.1 Basal or ground elevations
These refer to the basal or ground-level values
used to display raster images or vector objects
within the 3D space. They are needed to place an
object correctly according to the z scale of the
display. The height values can be derived from one
of several sources: the values of the layer being
displayed (the nodes of a TIN or the pixels’ DN
values of a DEM); the values stored in a different
TIN or raster layerwhich covers the same geograph-
ic area; or lastly, from a value or expression
(this would produce elevation at a fixed value or
as a function of another attribute). Figure 16.4
illustrates the principle and effects of this.

16.3.2.2 Vertical exaggeration
This refers to a kind of relative scaling used
within 3D views to make subtle surface features
(and any objects on the surface) more visible. This
scaling applies to the environment of visualization
rather than to the datasets being visualized; it is a
temporary visual effect produced by multiplying
the height values in the display by a constant factor.
A vertical exaggeration of 2 multiplies all heights
by 2 and exaggerates the vertical scale, whereas an

exaggeration of 0.1 multiplies all heights by 0.1 and
suppresses the vertical scale, and so on, as shown
in Figure 16.5.

Vertical exaggeration has two main uses: to
emphasize subtle changes in elevation on a surface
that is relatively flat or has great extent; and to force
the x, y units into proportion with the z units, if these
represent different quantities or units.

16.3.2.3 Projection of 2D vector objects
into 3D space

Vector projection or ‘extrusion’ represents the 3D
projection of 2D vector features. For example,
an extruded point becomes a line; an extruded line
becomes a wall; an extruded polygon becomes a
block. Objects can also be projected downwards,
below a surface, so that a point representing a well

Figure 16.5 Schematic illustration of vertical exagger-
ation (VE) in 3D environment. Three surface elevation
profiles are shown, with no exaggeration (lowest profile),
and with VE factors of �2 and �4 (middle and upper
profiles respectively)

Figure 16.4 Schematic illustration of the effect of assigning basal elevations to a raster surface and vectors in 3D
space: (a) flat raster and vector features; (b) surface extruded but vectors are still flat; and (c) both surface and vectors
have height and the vectors now plot on the surface
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or borehole could be extended to represent its depth
below ground level. In contrast to the base eleva-
tions, extrusion controls the upper elevation of
features and the simulation of 3D objects using
2Dmap features. Since they are simulations, feature
extrusions can be said to produce ‘geotypical’ or
generic representations of physical objects, rather
than ‘geospecific’ ones (i.e. actual objects).

Features can be extruded by a variety of methods,
as shown in Figure 16.6. A simple line feature is
shown whose heights, when added to by various
methods, are altered to simulate other features.
By adding a constant value, the line feature is
extruded upwards by a constant value to become
a wall (50 units, as shown in Figure 16.6b); this can
be applied to points and lines only. A second form of
extrusion is formed when a value is added to the
minimumormaximumheight of the feature (base or
top), and all other vertices are extruded to the same
absolute value, whether up or down (as shown in
Figure 16.6c and d); this can be applied to lines and
polygons only. Lastly the vertices can be extruded to
a specified absolute value, whether above or below
the original values, as shown in Figure 16.6e; this
can be applied to points, lines and polygons.

16.3.2.4 Artificial illumination
This also applies to the environment of visualization
rather than to the datasets themselves and is calcu-
lated by the same principle as the estimation of
oblique light hillshading. Every 3D display has
a theoretical light source, the position of which
controls the lighting and shading of the display.
The pseudo-illumination geometry is defined by
azimuth and altitude angle settings. Again azimuth
is a compass direction, measured clockwise in
degrees from 0 (due north) to 360 (also due north).

Altitude is the angle, measured in degrees from 0
to 90, between the light source and the horizon.
An altitude of 0� means the light source is levelwith
the horizon; an altitude of 90� means it is directly
overhead.

16.4 Extracting surface parameters

Surface or terrain parameters, such as slope angle
(gradient) and orientation (aspect), are important
controls on a number of natural processes, such as
rainfall runoff and erosion, and incident solar radi-
ation upon slopes. There are many published texts
describing different methods of calculating these
parameters from DEMs. As described in detail in
Chapter 4 and briefly in Chapter 14, the calculation
of slope gradient, aspect and curvature, from a raster
surface, are essentially neighbourhood operations
or point spread functions, involving the use of a
convolution kernelwhich is passed over the raster to
produce a new set of values that describe the vari-
ance of each parameter and the morphology of that
surface. Here we provide a summary of the para-
meters and the more common methods for their
calculation, referring the reader to further texts
where appropriate. Each parameter is illustrated
here using a simple 5� 5 raster surface.

16.4.1 Slope: gradient and aspect

A slope is defined by a plane tangent to the surface,
as modelled by a DEM at a point, and it confers the
angle of inclination (steepness) on that part of the
surface. While typically applied to topography,
slope may be useful in analysing other phenomena,

Figure 16.6 Illustration of the mechanisms of extruding 2D vector objects into the 3D perspective environment,
for the purposes of visualization
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for example for a surface of rainfall intensity,
showing where intensity is changing and how
quickly (steeper ‘slopes’ indicate values that are
changing faster).

Slope has two component parameters: a quantity
(gradient) and a direction (aspect). Gradient (g) is
defined as the maximum rate of change in altitude
and aspect (a) represents the compass direction,
or azimuth, of this maximum rate of change. For the
geoscientist this is equivalent to dip and dip direc-
tion of an inclined bedding or structural surface.
More analytically, slope gradient at a point is the
first derivative of elevation (z) with respect to the
surface slope, where g is the maximum angle, and
the direction or bearing of that angle is the aspect.
Since gradient has direction, it is a vector product.
At the same time the first derivative at a point can
be defined as the slope (angular coefficient or
trigonometric tangent) of the tangent to the function
at that particular point.

The general mathematical concept and calcula-
tion of gradient for raster data have already been
introduced in Chapter 4 (see Section 4.4, formulae
(4.12), (4.14), (4.15)) in relation to high-pass filters.
Here we address the same parameter with direct
relevance to surfaces and in particular to DEM data.

16.4.1.1 Gradient
Slope gradient may be expressed as either degrees
or per cent; the former are commonly used in
scientific applications, while the latter is more
commonly adopted in transport, engineering and
other practical applications. Per cent gradient is
calculated by dividing the elevation difference
(known as the rise) between two points by the
distance between them (known as the run), and
then multiplying the result by 100. The degree of

gradient is derived from the geometric relationship
between the rise and run, as sides of a right-angled
triangle, the angle opposite the rise. Since degree of
slope is equal to the tangent of the fraction of rise
over run, it can also be calculated as the arctangent
of rise over run. Measures of slope in degrees can
approach 90� but measures in per cent can approach
infinity, for instance in the case of a vertical cliff.
An example is shown in Figure 16.7.

So for a raster grid, gradient is calculated, on
a pixel-by-pixel basis, within a moving 3� 3
window, as the maximum rate of change in values
between each pixel and its neighbours. The gradient
(g) is calculated using a second-order finite differ-
ence algorithm based on the four nearest neigh-
bours:

tan g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dz=dxð Þ2 þ dz=dyð Þ2

h ir
: ð16:5Þ

Such measures are given in degrees or per cent,
according to taste:

gdegree ¼ arctan
gper cent

100

� �
ð16:6Þ

gper cent ¼ tanðgdegreeÞ � 100: ð16:7Þ
Common slope procedures involve calculation

from the pixel values immediately above, below, to
the left and to the right of the central pixel, but not
the corner (diagonal) pixel values, and in such cases
this is referred to as the rook’s case because it
resembles the way the rook moves on a chessboard.
While elevation models are commonly stored as
integer data (normally 16 bit), the output from a
slope calculation will always be a real number, that
is floating point.

Figure 16.7 Simple raster example: (a) surface (integers); and (b) gradient (floating point)
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Since g is usually calculated in radians, conver-
sion to degrees is given by

gdegree ¼ arctanðgradianÞ � 180

p

� �
: ð16:8Þ

See Sections 20.4, 21.1 and 21.3 for examples of the
use of slope (gradient) within the GIS case studies
section in Part Three.

16.4.1.2 Aspect (or azimuth)
The companion component of gradient, aspect (a)
identifies the downslope orientation or direction of
gradient, measured with respect to north. When
calculated from surface elevation (topography), it
is usually referred to as ‘aspect’; in reference to other
parameters the term ‘azimuth’ tends to be used.

The pixel DN values in a raster representing
aspect are compass directions or bearings, in de-
grees, measured in a clockwise direction from 0 to
360, where north has a value of 0�, east 90�, south
180� and west 270�. An example is shown in
Figure 16.8.

Aspect is calculated in the same ‘rook’s
case’ manner, as in the calculation of gradient,
as follows:

tana ¼ dz=dxð Þ
dz=dyð Þ : ð16:9Þ

Any pixels calculated as having a zero slope, repre-
senting areas which are ‘flat’, are given a special
aspect value, usually �1, to indicate that they have
no aspect direction:

if ðdzx ¼ 0 AND dzy ¼ 0Þ; a ¼ � 1: ð16:10Þ
An example of the use of aspect within a slope
stability hazard assessment can be found in Section
21.3 in Part Three.

16.4.2 Curvature

Curvature (c) represents the rate of change in
surface orientation of a variable across an area.
It is calculated from a surface (raster or vector),
such as elevation, and describes the convexity or
concavity of that surface. Referring to Figure 16.2,
it can be considered as a measure of the variation in
the SN across the image or map, and is therefore the
first derivative of the surface normal vector, and
the second derivative of position on a surface
(with respect to the changing rate of gradient g;
see also Section 4.4).

Several measures of curvature are recognized:
profile (downslope) curvature and cross-sectional
(plan) curvature, which are orthogonal to one an-
other; and total curvature as a summation of profile
curvature and cross-sectional curvature. Profile cur-
vature is parallel to the direction of maximum
gradient (or aspect) while cross-sectional curvature
is perpendicular to it. Essentially, total curvature is
the Laplacian, as further explained later.

Geomorphological forms can be discriminated in
digital images by their curvature forms, examples of
which are illustrated schematically in Figure 16.9;
for example, ridges are convex in cross-section and
valleys are concave in cross-section (where gradient
and Laplacian may be variable in both cases),
whereas planar slopes have zero cross-sectional
curvatures since gradient is constant and thus cur-
vature is zero. Peaks are convex in both cross-profile
and cross-sectional (i.e. in all directions) and the
reverse is true for pits, which are concave in all
directions. If areas are flat or slopes are planar,
curvature is zero.

As the summation of the changing rate of
gradients in x and y directions for a 2D dataset,
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Figure 16.8 Simple raster example (a) surface (integer); and (b) aspect grid (floating point)
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the Laplacian represents the curvature at a point
without direction, i.e. total curvature, and it can be
derived by the application of a Laplacian convolu-
tion filter to a raster surface (see Section 4.4). From
differentiation theory, a negative Laplacian indi-
cates a convex surface and a positive Laplacian a
concave one. If, however, we recall the principle of
the Laplacian filter in Section 4.4, we know that the
conventional Laplacian filter in image processing
gives the reverse so that a positive Laplacian
indicates convexity and a negative one concavity.

The Laplacian, as a scalar, is composed of
components in both x and y directions. We can
decompose it in the aspect, or gradient, direction
and in the direction perpendicular to aspect, by a
second partial differentiation of elevation (z) in
these two directions. We denote these as cprofile
and ccross, and they represent the profile curvature

and cross-sectional curvature as introduced earlier.
For simplicity, we denote the Laplacian as ctotal.
There is a convention, in some GIS software
packages, that the three measures of curvature
are calculated in such a way that positive values
for ctotal, or ccross, indicate an upwardly convex
surface, whereas a positive cprofile indicates an
upwardly concave surface; the illustrations in
Figure 16.9 follow this convention. A zero value
for any of these indicates no curvature. Other
packages give all forms of curvature with positive
values to indicate convexity and negative ones
for concavity. Regardless of any convention, the
Laplacian, using a convolution kernel, is the sim-
plest and reliable method of deriving curvature
from raster data. A simple example is shown in
Figure 16.10, with the Laplacian result in
Figure 16.10b.
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Figure 16.10 Simple raster example: (a) surface; (b) the Laplacian, as representing total curvature (as would be
calculated using the 3� 3 kernel, the outer rim of pixels always having zero value because of the kernel size); and (c)
total curvature as calculated using the polynomial fitting method (as in Figure 16.11). Since both (b) and (c) represent
total curvature, positive values indicate convexity and negative values indicate concavity. Both input and output are
integer values

(a)

Planar slope Convex slope Concave slope Valley Ridge
Cprofile & Ccross = 0
gprofile & gcross = constant

Cprofile < 0,   Ccross > 0
gprofile & gcross = variable

Cprofile > 0,   Ccross < 0
gprofile & gcross = variable

Cprofile = 0,   Ccross < 0
gprofile = constant
gcross = variable

Cprofile = 0,   Ccross > 0
gprofile = constant
gcross = variable

(b) (c) (d) (e)

Figure 16.9 Some common schematic slope forms and the relationships between curvature and gradient: (a) planar
slope; (b) convex slope; (c) concave slope; (d) channel; and (e) ridge, where curvature may be positive (concave) or
negative (convex)
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Mathematically, true curvature along the aspect
direction a is a function of both first and second
derivatives defined as

ctrue ¼ ðq2z=qa2Þ
½1þðqz=qaÞ2�3=2

: ð16:11Þ

The estimation of curvature, as carried out in many
proprietary software suites, including ESRI’s Arc-
GIS and RiverTools, follows the method first for-
mulated by Zevenbergen and Thorne (1987). This
method estimates curvature using a second-order
polynomial surface (a parabolic surface) fitted to the
values in a 3� 3 window centred at x and y; the
surface is constructed in the manner illustrated by
the block diagram in Figure 16.11a, using para-
meters in Figure 16.11b, and is of the general form
as shown here:

c ¼ Ax2y2 þBx2yþCxy2 þDx2 þEy2

þFxyþGxþHyþ I
ð16:12Þ

where c is the curvature function at position x and y
as illustrated in Figure 16.11a. Coefficients A to I
are derived as in Figure 16.11b (the result is shown
in Figure 16.10c). The methods used in Idrisi and
Landserf also use polynomials but of slightly dif-
ferent form.

Referring to the values in the block diagram in
Figure 16.10, the term cprofile can be estimated by
(parameter D in Figure 16.11b)

cprofile ¼ 200ðDG2 þEH2 þFGHÞ
ðG2 þH2Þ ð16:13Þ

and ccross as (parameter E in Figure 16.11b)

ccross ¼ � 200ðDH2 þEG2 �FGHÞ
ðG2 þH2Þ : ð16:14Þ

The total curvature, ctotal, is derived fromD andE as
in Figure 16.11b as

ctotal ¼ � 200ðDþEÞ ð16:15Þ
which for the values shown in Figure 16.11c,
and p¼ 10, gives cprofile¼ 1.4, ccross¼�4.6 and
ctotal¼�6, indicating that the feature represented
by the values in this 3� 3 window is a channel,
whose bed is slightly concave along its length, and
that the overall window curvature is concave.

Several software packages employ this polyno-
mial fitting method but there are some concerns
with the derivation of curvature in this way.
Firstly, the polynomial surface may not neces-
sarily pass exactly through all nine elevation
points (z1 . . . z9). Secondly, if the complexity of
the actual surface (represented by the 3� 3 grid in
Figure 16.10a) is a plane, then the coefficients A
to F will be zero. It must be stressed that this
method does not represent the calculation of true
curvature, merely directional estimates of it.

From an applied viewpoint, curvature could be
used to describe the geomorphological character-
istics of a drainage basin in an effort to understand
erosion and runoff processes. The gradient affects
the overall rate of movement downslope, aspect
defines the flow direction and profile curvature

Figure 16.11 (a) Pixel diagram illustrating the relation of raster elevations to a conceptual curved, channel-like
(concave) surface. Modified after Zevenbergen and Thorne (1987). (b) Equations used to derive the various directional
components of curvature from the surface in (a) where P is the increment between two pixels in either the x or y
direction. (c) Sample elevation z values representing the feature shown in (a)
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determines the acceleration (or deceleration) of
flow. Profile curvature has an effect on surface
erosion and deposition and as such is a very useful
parameter in a variety of applications. Cross-sec-
tional curvature affects convergence and diver-
gence of flow, into and out of drainage basins,
and so can be used to estimate potential recharge
and lag times in basin throughput (see also
Section 16.4.3).

The shape of the surface can be evaluated
to identify various categories of geomorphology,
such as ridges, peaks, channels and pits. These
are summarized in Table 16.1, and illustrated in
the 3D perspective terrain views shown in
Figure 16.12.

16.4.3 Surface topology: drainage networks
and watersheds

Several other very important parameters can be
extracted from surfaces, and in particularly
DEMs, and these relate to the connection between
geomorphological features and the fluvial pro-
cesses which produce them, hence the term

‘surface topology’. An increasing number of tools
are now available for the extraction of stream
networks, drainage basins, watersheds and flow
grids from raw elevation data. These combine
calculations of aspect and curvature to establish
the movement of water across a surface, by de-
fining connectivity between drainage channels and
to construct catchments and flow networks. This
represents an area extensive research and one to
which we cannot do justice here.

The extraction of drainage networks has been
investigated by many authors and these methods
now appear in many proprietary software suites
(e.g. RiverTools, ArcGIS’s hydrological toolbox
and Idrisi). There are many tricky issues asso-
ciated with automated drainage network extra-
ction from DEMs and it has been suggested that
these are caused by scale dependence in the meth-
ods and a failure to accommodate the fractal
natures of both elevation and drainage. Some
algorithms begin with the calculation of flow
direction or flow routing, then creation of drainage
basins from their outlet points, which are ‘chased’
progressively upwards to the drainage divides
(e.g. River Tools). Potential problems occur where

Table 16.1 Geomorphological features, their surface characteristics and the pixel curvature formula
relationships, where positive values of cprofile indicate upward concavity, and the opposite is true for ctotal and ccross

Geomorphological feature Surface characteristics
Second derivatives:
profile and plan curvature

Peak Point that lies on a local convexity
in all directions (all neighbours
lower)

cprofile < 0, ccross > 0

Pit Point that lies in a local concavity
in all directions (all neighbours
higher)

cprofile > 0, ccross < 0

Ridge Point that lies on a local convexity
that is orthogonal to a line with
no convexity/concavity

cprofile� 0, ccross > 0

Channel Point that lies in a local concavity
that is orthogonal to a line with
no concavity/convexity

cprofile� 0, ccross < 0

Pass Point that lies on a local convexity
that is orthogonal to a local
concavity (saddle)

cprofile < 0, ccross < 0

Plane Points that do not lie on any
surface concavity or convexity
(flat or planar inclined)

cprofile¼ 0, ccross¼ 0

CH16 REPRESENTING AND EXPLOITING SURFACES 225



there are pits in the DEM surface since these tend
to stop the ‘drainage chasing’ algorithms, and so
these should be corrected first. Any pits in the
DEM must be filled to create a ‘depressionless’
DEM and this is used to derive flow direction and
flow accumulation (to give a measure of flow
through each pixel); the latter is then thresholded
to give stream order which, combined with the
calculated watershed, enables the drainage net-
work to be derived (e.g. as in ArcGIS and illus-
trated in Figures 16.13 and 16.14). Geomorpho-
logical features, including drainage networks, can
also be extracted by skeletonization of the DEM
(see also Chapter 14).

16.4.4 Viewshed

A viewshed represents an area or areas that are
visible from a static vantage point. In the context
of surface data, the viewshed identifies the pixels
of an input raster (or positions on a TIN) which can
be seen from one or more vantage points (or lines).
The output product is a raster in which every pixel
is assigned a value indicating the number of vantage
points from which a pixel is visible. Visibility,
in this respect, refers to the line of sight, but
this ‘sight’ could also refer to the transmission
of other signals, such as radio and microwaves.
The viewshed is sometimes referred to as a 2D

Figure 16.12 Raster surfaces representing: (a) elevation; (b) total curvature (ctotal); (d) profile curvature (cprofile);
and (d) cross-sectional or plan curvature (ccross). A grey-scale colour lookup table with low values in black and high
values in white is used in each case. As calculated using ArcGIS’s Spatial Analyst curvature calculator, where positive
values of cprofile indicate upward concavity, whereas the opposite is true for ctotal and ccross
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isovist (see online resources). Viewsheds are used in
a variety of applications such as for the siting of
infrastructure, waste disposal or landfill sites, and to
select sites for transmission towers to avoid gaps in
reception.

In an example with one vantage point, each
pixel that can be seen from the vantage point is
assigned a value of 1, while all pixels that cannot be
seen from the vantage point are assigned avalue of 0.
The output is therefore a typically binary image.

The simplest viewshed calculations assume that
light travels in straight lines in a Euclidean manner,
i.e. the Earth is not curved and no refraction of light
occurs, and that there are no restrictions on the
distance and directions of view. This assumption
is acceptable over short distances (of several kilo-
metres) but corrections for the Earth’s curvature and
optical refraction by the Earth’s atmosphere
are necessary for accurate results over longer
distances.

To describe the concept and framework of a
viewshed, several controlling parameters can be
defined. These are the surface elevations of the
vantage points, the limits of the horizontal angle
to within which the viewshed will be calculated
(given as two azimuths), the upper and lower
angles, and the inner and outer radii (minimum and
maximum distances from the vantage point), limit-
ing the search distance within which the viewshed
will be calculated from each vantage point, the
vertical distance (if necessary) to be added to
the vantage points, and the vertical distance (if
necessary) to be added to the elevation of each pixel
as it is considered for visibility. These are illustrated
in Figure 16.15 and an example is shown in
Figure 16.16.

A modification of this could be used to model
areas where noise can and cannot be detected, such
as from military installations or road traffic, known
as a soundshed. Such soundshed analysis could

Figure 16.14 Derivation of flow direction (or flow routing) and accumulation: (a) ‘depressionless’ input surface; (b)
direction encoding kernel; (c) flow direction grid (each pixel is coded according to the direction in which flow would
pass from it, according to the values in the kernel, always moving to the lowest of the adjacent pixels); and (d) flow
accumulation grid (the number of pixels that flow into each pixel)

Figure 16.13 Schematic illustration of a drainage network extraction method (as used in ArcGIS)
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then prove useful in designing sound barriers
around potentially ‘noise-polluting’ activities.

16.4.5 Calculating volume

There may be many instances where we would like
to estimate the volume of a quantity, as well as area
or some other statistic. This may be very useful in
the estimation of necessary costs associated with
particular activities, such as for engineering or
construction purposes, for example how much soil
and rock need to be excavated to construct a cutting
for a railway line, or the expected volume of a

reservoir. Such calculations are usually referred to
as cut and fill analysis. Here we extract the change
between two surfaces (usually raster). These input
surfaces might represent the same location but
recorded at different times. The calculation is made
simple using raster because of the constant area of
the pixel and the height given by the pixel DN, so
that multiplying the two gives the volume occupied
by that pixel. So that for a 100� 100 raster, of
10m spatial resolution (i.e. an area of 100m2),
where each pixel DN represents a height of 2m
(above datum), the volume of the raster would be
100m� 2m� 10 000 pixels, i.e. 2 million cubic
metres. If for each pixel we calculate the volume, as

Figure 16.16 Simple raster example: (a) surface; and (b) viewshed (with simple vantage point indicated by a black
cross, to which there are no added offset or specified angles or radii). Both input and output are integer values.
Viewshed values of 1 or 0 indicate that the position is either visible or invisible (respectively) from the vantage point

Figure 16.15 Schematic illustration of parameters defining the viewshed: elevations of the vantage point(s) (H), the
limits of the horizontal angle to within which the viewshed will be calculated (azimuths 1 and 2), the upper and lower
view angles (V1 and V2) and the inner and outer radii (R1 and R2), limiting the search distance within which the
viewshed will be calculated from each vantage point, the vertical distance (OF1 and OF2) to be added to the vantage
points. Modified after the ESRI online knowledge base 2008
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a local operation, then one volume raster can be
subtracted from or added to another to derive
change. Depending on whether the change between
two rasters is negative or positive, we have cut and
fill statistics respectively.

16.5 Summary

It is worth noting once more the effect of the fractal
nature of surface features, a commonly overlooked
feature and one which has been commented on
by many authors. Gradient, aspect and curvature
are all phenomena which vary at different scales of
topography, and so scales of observation. Measur-
ing any of these phenomena in the field yields very
different results according to the distance over
which they are being measured. It has also been
shown that the effect of spatial resolution on their
calculation from raster imagery can have a profound
effect on the result.

Nevertheless, surfaces are clearly a valuable data
source from which a great variety of morphological
descriptive information can be extracted, and
for many different applications. Image processing
techniques andGIS-based tools overlap significantly

in this chapter, though they are applied here
with different intentions to those applied to multi-
spectral images.

Questions

16.1 What are the differences between continu-
ously sampled and discrete statistical
surfaces?

16.2 For any particular phenomenon you are work-
ing with, which type of surface description
should you choose and why?

16.3 What are DEMs and why are they so powerful
for geoscientific use?

16.4 What effect does spatial resolution have on the
estimation of slope gradient from a raster
surface?

16.5 How can parameters like slope and aspect be
used to derive neighbourhoods? How could
such neighbourhoods then be used?

16.6 What other applications could there be for
surface parameters such as gradient, aspect
and curvature? That is, in application to sur-
face data other than topography.
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17
Decision Support and Uncertainty

17.1 Introduction

Uncertainty in GIS is inevitable and it arises for
many reasons. The data we have at our disposal are
never complete, and our knowledge and under-
standing of a problem are flawed or limited, because
of natural variation, because of measurement error
or because the information is out of date. Albert
Einstein is famously quoted as having stated that ‘as
far as the laws of mathematics refer to reality, they
are not certain; as far as they are certain, they do not
refer to reality’. We cannot get away from it or
ignore its existence; we therefore must learn to live
with uncertainty and deal with it.

While we realize that we may not be able to
tackle directly the causes or sources of risk and
uncertainty, we can recognize the existence of the
uncertainty and attempt to quantify it, track its
course through any analysis and estimate or predict
its probable effect on the outcome. The more
advanced and involved our spatial analysis be-
comes, the more input factors are aggregated and
the greater effect any potential errors will have.
One other important thing that GIS allows us to do
in this respect is to simulate or model potential
outcomes and scenarios, varying the input para-
meters and the effects of errors and uncertainties as
we go. These processes act as a form of quality
control or validation for both data and analysis.
Through this process, not only do we better under-
stand the nature of the errors and uncertainties, but

we also improve our understanding of the problem
and the potential reliability of the result, by more
closely defining the limits of its applicability.
Some of the key publications covering this
subject include those by Goodchild and Gopal
(1989), Burrough and Frank (1996), Burrough
and McDonnell (1998) and Foody and Atkinson
(2002).

Three key concepts, which perhaps require defi-
nition or clarification in this context, are decision
support, uncertainty and risk (and hazard). We will
attempt to explain what wemean by these terms and
how they are relevant to GIS. This chapter attempts
to describe some of the surrounding issues and
causes of and potential solutions to the problem of
uncertainty.

17.2 Decision support

A spatial decision support system (SDSS) can be
thought of as a knowledge-based information sys-
tem which supports decision making or, more sim-
ply, is a mechanism to bring parameters together.
An SDSS could involve a system designed to assist
managers and/or engineers where the task at hand
may be complex and where the aim is to facilitate
skilled judgement. An SDSS could also be used to
assist in problems which are of a poorly understood
nature, or where data are incomplete, or where there
are variables of unknown significance involved.
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Indeed there aremany definitions because the SDSS
is used in many, very different contexts.

A ‘decision’ should be based on the level of
acceptable risk and on the degree of confidence
(error and uncertainty) in the available data. A
decision may also imply the need for a quantita-
tive prediction which demands the evaluation of
the influential criteria, to which the decision rules
will be applied. A good decision may lead to a
bad outcome (and vice versa) but if good deci-
sions are persistently attempted, then good out-
comes should become more probable. Such deci-
sion making can be subdivided according to the
situations in which the decisions are made, as
follows:

. Deterministic decisionmaking: This occurswhen
the ‘controls’ on the problem and the data are
understood with some degree of certainty; so too
are the relationships between each decision and
the outcome. In such cases, categorical classes,
rules and thresholds can be applied.

. Probabilistic decision making: Here the sur-
rounding environment, relationships and out-
comes are uncertain (to some degree). In general,
this approach treats uncertainty as ‘randomness’
but this is not always the case, and especially not
in the natural environment. Since a probabilistic
approach tends to produce only a true or false
result, degrees of uncertainty can only be accom-
modated if it is considered as a separate and
distinct state.

. Fuzzy decision making: This approach deals
with uncertainties which are related to natural
variation, imprecision, lack of understanding or
insufficient data (or all these). Such ambiguities
can be accounted for by allowing that classes can
exist in varying amounts rather than as one of
two end-member states (true or false) so that an
infinite number of further states, representing
the increasing possibility of being true, can be
accommodated.

Probability and possibility form opposing but
complementary concepts which coexist within
Dempster–Shafer theory, described in Chapter 18.

Examples of applications in which the SDSS is
frequently used might include, for example, a clas-
sification of locations in an area according to their

estimated suitability for a pipeline route, or for a
landfill site, toxic waste disposal or a hazard assess-
ment. Within these and other applications, the func-
tion of the SDSS is to help decision maker(s) to
identify areaswhere there are unacceptable levels of
risk associated with various predictive outcomes, so
that they can then select appropriate courses of
action.

17.3 Uncertainty

In general terms, uncertainty canbe considered as an
indeterminacy of spatial, attribute or temporal infor-
mation of some kind. It can be reduced by acquiring
more information and/or improving the quality of
that information.Therewillbe fewcaseswhere it can
be removed altogether, so it needs to be reduced to a
level tolerable to the decision maker. Methods for
reducing uncertainty include defining and standard-
izing technicalprocedures, improvingeducationand
training (to improve awareness), collecting data
more rigorously, increasing spatial/temporal data
resolution during data collection, field checking of
observations, better data processing methods and
models, and developing an understanding of error
propagation in the algorithms used.

Assumptions must be made in all spatial analyses
where any kind of ‘unknowns’ or uncertainties need
to be dealt with. Examples of assumptions include
that soil and rock classes (or any classes) are
homogeneous across the area they represent; that
slope angles classified as stable are stable every-
where; that classifications made at the time of data
collection have not changed since then; or that
geological boundaries are rigid and their positions
are certain, everywhere. Just as uncertainties are
unavoidable, so too are these assumptions. There
are methods that we can employ to quantify these
uncertainties and so limit the effect of the assump-
tions, such as allowing for the gradational nature
of natural and artificial boundaries and for estab-
lishing threshold values for classification and stan-
dardization. Uncertainties are many and complex,
and the underlying rule, once again, is to know the
limitations of and to understand the data from the
start.

Conditions of ‘certainty’, in contrast, could in-
clude situations where there is only one ‘state of
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nature’ or where any ‘state of nature’ that exists has
only one effect on the outcome or only one outcome.
Clearly such definitive, certain and simplistic states
are rare or unlikely in nature but they are useful
concepts from which to consider more realistic
possibilities. There may be cases where an element
of certaintymay be acceptable, perhapswith respect
to either data availability or cost, since both are
often in short supply. Such shortages often lead to
compromise, when some areas of uncertainty may
have to be ignored.

Uncertainties within spatial analysis may be re-
lated to thevalidityof the information itself (criterion
uncertainties), to the potential effects of the phenom-
ena (threshold uncertainties), or to the handling of
the information (decision rule uncertainties).

17.3.1 Criterion uncertainty

Criterion uncertainty arises from errors in original
measurement, identification and/or data quality
(perhaps during data collection by a third party).
Broadly speaking, criterion uncertainty may be
considered to be related to measurement (primary
data collection) or conceptual (interpretative). It
includes locational, attribute value, attribute class
separation and attribute boundary uncertainties and
they may not be correctable. In such cases an
important step is to estimate or record the potential
errors for the benefit of future users, and for your
own liability. Measurement errors may derive
directly from instruments with limited precision or
as a result of user error, observer bias,mismatches in
data collected by different individuals, sampling
errors or poor sampling. Understanding the target
and objective is vital in designing the sampling
strategy. Repeated sampling can often correct for
such potential errors but the expense of doing this
may be prohibitive.

Criteria prepared for spatial analysis inherently
include some uncertainty (error) since they have
probably been rescaled or converted to discrete
rasters from continuously sampled rasters, reclas-
sified and/or generalized; they are thus the product
of subjective decision making. Errors in spatial data
are usually considered to be normally distributed
and identifying them requires some ground truth
information to allow comparison of the differences

between measured and observed, such as through
the RMS error calculation. One thing is common to
all: themore criteria that are involved in the decision
making, the greater the uncertainty will be. In this
situation, one could restrict the analysis to a sim-
plistic combination of a few criteria but the simplis-
tic solution will still incorporate uncertainties; it
will merely ignore them since it cannot account for
them. In the end there are two choices where data or
criterion uncertainty is concerned: to reject the data
(in favour of better data) or accept them and work
around the uncertainties they contain. In many
cases, the latter is the only course of action since
there are no ‘better’ data.

17.3.2 Threshold uncertainty

There are two principal causes of threshold uncer-
tainty. Firstly, the phenomena we describe are gen-
erally heterogeneous, that is we choose homoge-
neous classes for simplicity and convenience. The
concept of ‘possibility’ could therefore be very
useful when attempting to define class boundaries
in natural phenomena, i.e. when deciding whether
an object belongs to one class or another. Secondly,
the boundaries between natural phenomena of any
kind are rarely rigid or Boolean in character, be-
cause again we define arbitrary classes for our own
convenience (theymay not exist in reality). If we are
able to treat such divisions less rigidly, we can in
effect blur the boundaries between them. This will
allow further possible states to exist; that is, in
addition to ‘suitable’ or ‘unsuitable’, or prospective
and non-prospective, stable and unstable values can
be incorporated which represent the increasing
likelihood of belonging to a class or state, as illus-
trated in Figure 17.1.

Similarly, considerable research has been carried
out into the use of multi-source datasets to generate
mineral ‘prospectivity’ estimates. In many cases,
identifying the areas of very low and very high
prospectivity has not been so difficult but uncer-
tainty arises in describing the areas of intermediate
prospectivity, which then require further analysis
and interpretation. In such cases prospectivity (suit-
ability) should be treated as a continuous phenom-
enon in representing a measure of confidence in an
outcome.
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17.3.3 Decision rule uncertainty

Decision rule uncertainty refers to theway in which
we apply thresholds to particular criteria to denote
values of significance. If we have firm and reliable
evidence about some phenomenon we may be able
to apply ‘hard’ deterministic decision rules confi-
dently. There may be many cases where some
prescriptive law governs the analytical selections
we make, in which case we also have to apply hard
decision rules in order that the result complies with
that law. Conversely, where we have incomplete
data and must rely on circumstantial evidence then
we should find away to apply ‘soft’, probabilistic or
fuzzy decision rules, ones in which a certain degree
of confidence/uncertainty is attached to each result.

This type of uncertainty arises because of sub-
jective judgements made by the decision maker in
the ranking and weighting of criteria, in the method
of criteria combination and in the choice of
alternative courses of action. Spatial interpolation
also falls into this category, since the nature and
accuracy of the result are directly affected by the
interpolation method chosen, and there is no unam-
biguously correct method. Uncertainties of this type
are the most difficult to quantify, since they are not
simply caused by mistakes or imprecision, and they
may never be precisely known.

17.4 Risk and hazard

The existence of uncertainties and errors in both
data and spatial analysis introduces an element of
risk. Risk can be thought of not only as the predic-
tion of the likelihood of a (potentially unwelcome)
event occurring, but also as the chance of getting
that predictionwrong. It is therefore normal for such
spatial analysis to form part of a risk assessment
framework of some kind, an example of which is
illustrated in Figure 17.2.

There are many definitions of risk and there is a
tendency for terms like risk and hazard, risk and
uncertainty, or risk and probability to be used
interchangeably, but in all cases this may be
because of a misunderstanding of their meanings.
In many senses, hazard represents the probability
of the occurrence of an unwelcome event and risk
is that probability modulated by the economic
value of the losses per event. To this end, Varnes
(1984) defined the following relationship in an
attempt to separate the related terms of risk and
hazard and vulnerability, which represents a mea-
sure of the economic value (i.e. damage and cost, in
both economic and human senses):

Risk ¼ Hazard� Vulnerability:

Figure 17.1 Different boundary types between class thresholds: (a) crisp (Boolean) threshold producing categorical
classes of unsuitable and suitable; and (b) a fuzzy threshold representing increasing probability of membership of the
class ‘suitable’

Figure 17.2 Generalized risk assessment framework
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Risk then represents the expected degree of loss,
in terms of probability and cost, as caused by an
event. Within the context of uncertainty, risk can be
described by three phases of activity: (i) the predic-
tion of one or more adverse events (scenarios)
which have unexpected or unknown outcomes;
(ii) the probability of those predicted events occur-
ring; and (iii) their actual consequences. In defining
risk, we should also define an acceptable level of
risk, since it is a variable quantity. One popular
method is that proposed by Melchers (initially in
1993, later published in 2000), which is known as
the ‘as low as reasonably practicable’ or ALARP
principle. This represents the minimum limit
below which risk can be practically ignored. This
is subjective and there are several alternative
definitions, such as the ‘lower limit beyond which
further risk reduction cannot be justified’. A com-
mon response to risk associated with uncertainty is
to reduce the risk, either by risk retention (bearing
the consequences) or risk transfer (i.e. insurance).
However, all potential outcomes might not be
insurable!

17.5 Dealing with uncertainty in
spatial analysis

There are a number of tools we can employ to
quantify, track and test for ambiguity within our
data and analytical methods. These include error
assessment, fuzzy membership functions, multi-
criteria evaluation, error propagation and sensitivity
analysis.

17.5.1 Error assessment (criterion
uncertainty)

Errors can be defined as the deviation of a data value
from the considered or measured ‘true’ value. Other
terms that need defining here include precision and
accuracy since these vary within some interval
according to errors in the data. Precision can be
described as the level of measurement ‘exactness’,
and is usually limited by the instrument and/or
method, whereas accuracy may be thought of as
the degree to which information matches true or

accepted values. The standard deviation is usually
taken as a measure of accuracy and it is normally
stated with reference to an interval, that is� a given
value. High precision necessarily does not indicate
high accuracy, nor does high accuracy imply high
precision.

Errors are either systematic or random. Random
errors occur when repeated measurements do not
agree and they tend to be normally distributed about
the mean. Systematic errors tend to be either posi-
tively or negatively skewed, indicating that they are
of common source and of similar sign and value,
such as an instrument error. Errors may be of
position or attribute, and their source could be
measurement (imprecision or instrument malfunc-
tion) or interpretation (conceptual). Ground-based
sampling is usually taken to provide data which
represent ‘true’ values. The errors are then identified
by comparison with the ‘true’ values at the sample
locations. For these locations, the root mean square
errors (RMSE) can be calculated as

RMS ¼
P

iðxi�xitÞ2
n�1

" #0:5

ð17:1Þ

where xi is the measured value, xit is the true value
and n is the number of measurements (and hence
error values). The RMS is commonly used for error
description in GIS for continuously sampled data. In
classified or categorical data, errors are usually
described using a confusion matrix (see Section
8.5.2) which is constructed by cross-tabulation of
observed (true) and mapped (estimated) values.
This type of error assessment is commonly applied
to classifications made from remotely sensed
images, and has been the driving force for a great
deal of work on validation within remote sensing
applications. In such cases, the errors may come
from any of a great many sources: misregistration
of images, sensor properties, classification errors,
ground truth data errors, class definitions, pixel
impurities and more. Such errors are commonly
irregularly distributed (spatially) but the confusion
matrix technique does not reveal this pattern.
Alternatively a geostatistical approach could be
used to model the geographical variation of accu-
racy within the results. Accuracy assessment in
classifications from remotely sensed data are
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therefore not trivial but are now considered to be
fundamental to all forms of thematic mapping.
Despite this, there still seems to be no universally
accepted standard method of doing so; refer back
to Section 8.5.2.

17.5.2 Fuzzy membership (threshold
uncertainty)

Fuzzy logic is commonly applied in one of twobasic
ways, either through the combination of Boolean-
typemaps, using fuzzy rules, to yield a fuzzy output
map, or through the use of fuzzy membership
functions to rescale the data for submission to
further analysis of varying kinds. The latter incor-
porates a measure not only of a phenomenon that
exists on the ground, but also of some level of
knowledge (confidence) about that phenomenon.

Fuzzy membership or fuzzy sets provide an ele-
gant solution to the problem of threshold and deci-
sion rule uncertainty by allowing ‘soft’ thresholds
and decisions to be made. Fuzzy membership
removes the requirement of ‘total membership’:
instead of just two states of belonging for a class,
a fuzzy variable can have one of an infinite number
of states ranging from 0 (non-membership) to 1
(complete membership) and the values in between
represent the increasing possibility of membership.
A simple linear fuzzy set is defined by

mðxÞ ¼
0

x� a

b� a
1

x < a
a < x < b
x > b

8><
>:

ð17:2Þ

where a and b are upper and lower threshold values
of x defining the significant limits for the fuzzy set.
Each value of x is associated with a value ofm(x) and
ordered pairs [x, m(x)], and these together comprise
the fuzzy set.

The fuzzy set membership function can be most
readily appreciatedwith reference to a simple linear
function but it may actually be linear, sigmoidal or
J-shaped, and monotonic or symmetric in form
(Figure 17.3). The threshold values which define
it will depend on the phenomenon and desired
outcome of the operation; the threshold values
applied to each membership function reflect their

significance on the result but the function is not
necessarily linear. Here we have only presented the
linear fuzzy set membership function to illustrate
the principle. The resultant fuzzy set layers can be
combined in a number of ways, for example using
Boolean logic and fuzzy algebra or ‘set theory’.

An illustration of multi-criteria evaluation ap-
plied to hazard assessment, using fuzzy scaled
inputs (see also Section 15.5.6), is described in a
research case study in Section 21.3.

17.5.3 Multi-criteria decision making
(decision rule uncertainty)

In this context we introduce the concept of multiple
criteria evaluation ormulti-criteria decisionmaking,
a process by which the most suitable areas for a
particular objective are identified, using a variety of
evidence layers, andanyconflicts betweenobjectives
are resolved. The risks arising from decision rule
uncertainty here are reduced through the integration
of multiple criteria representing the various contrib-
utory processes and quantities. This process allows
the input criteria to be handled in different ways
according to their desired function within the analy-
sis. This is further enhanced by the evaluation
of individual criteria significance, the ranking of
those criteria and the assignment of weights to give
certain criteria variable influence inside the model.
The criteria being evaluated are generally one of two
types: constraints which are inherently Boolean and
limit the area within which the phenomenon is
feasible, or factors which are variable and are mea-
sured on a relative scale representing a variable
degree of likelihood for the occurrence of the phe-
nomenon. Decision rules, applied to these criteria,
are commonly based on a linear combination of
factors together, along with the constraints,
producing an index of suitability or favourability.
(These topics are discussed further in the next
chapter.)

It is worth noting here the difference between
multi-attribute decision making andmulti-objective
decisionmaking, since both fall into this category of
activities, and, further to this, the possibility of
involving either individual and multiple decision
making. Multi-criteria decision making is often
used to cover both types, multi-attribute and multi-
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objective. The attribute is a measured quantity or
quality of a phenomenon, whereas an objective
infers the desired state of a system being analysed
or simulated. The difference between individual and
multiple decision making is not really about the
number of people making the decisions but about
the number of objectives being satisfied. For in-
stance, an individual decision-making process with
one single goal may involve a group of several
people or just one, and a multiple decision-making
process, involving a coalition of participating in-
dividuals, may be competitive or independent, de-
pending on the nature of the topic. Group decision
making is common in the public sector, especially
since stakeholder involvement is often mandatory
and there may be many points of view to be
considered.

Commonly used multiple criteria combination
methods which incorporatemeasures of uncertainty
include weighted factors in linear combination
(WLC), weights of evidence modelling (Baye-
sian probability), vectorial fuzzy modelling and
Dempster–Shafer analysis (belief and plausibility).
These will be described in more detail in the next
chapter.

17.5.4 Error propagation and sensitivity
analysis (decision rule uncertainty)

17.5.4.1 Error Propagation
This refers to the process of determining the ex-
pected variability in the result as produced either by
known errors, or by errors deliberately introduced
into the input dataset. There are several popular
methods of error propagation, including Monte
Carlo simulation (which is probably the most wide-
ly used) and the analytical method or Taylor’s series
error propagation analysis.

17.5.4.2 Monte carlo simulation
The Monte Carlo method is one of a group of rather
computer-intensive general methods for assessing
the impact of statistical errors on the results of
functions. For any particular variable z which is a
function of various inputs i1 . . . in, the idea is to
determine the error associated with the estimated
value of z, and the contributions of each input to the
error. The variable is considered to have a normal
probability distribution function with known mean
and variance, and stationarity is assumed. The
function is calculated iteratively, to generate values

Figure 17.3 Fuzzy set membership functions: linear, sigmoidal, J-shaped, monotonic and symmetric
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of zmany times, so as to derive the average resulting
z value and its standard deviation.

This method is commonly used to assess the
errors associated with the calculation of surface
parameters from a DEM, such as slope and aspect.
In this context, for an error dataset with a mean of
m¼ 0, variance s2 is produced for a standard devi-
ation of�1m for instance; this is added to theDEM.
Slope, for instance, is then calculated many times,
for example 100 times, to produce 100 slightly
different results. These are combined to produce
an average slope image. Division of the standard
deviation by the average slope then gives a measure
of the relative error, in both magnitude and
distribution.

17.5.4.3 Analytical method
This method uses a mathematical (polynomial-
type) function to describe the way errors are trans-
lated through a particular decision rule. If a function
has continuous derivatives (up to n þ 1th order) it
can be expanded and if continued expansion causes
the function to converge, then it is known as a
Taylor’s series, which is infinitely differentiable.
Error propagation of this type involves evaluating
the effect of known errors on the function, where
only the lowest order terms are considered impor-
tant since any pattern can be simulated if a function
of high enough order is used. These methods are
described in detail by Heuvelink, Burrough and
Stein (1989), Goodchild and Gopal (1989) and
Burrough and McDonnel (1998).

17.5.4.4 Sensitivity analysis
This process revolves around the view that the
attribute values and their weights, within spatial
analysis, are the most important aspect since they
comprise the most subjective part of the analysis.
The scaling and weighting of datasets involves
interpretation and perceptive judgements, which
introduce ‘error’; if the rank order of inputs changes
greatly as the weights are modified, then the latter
should be re-evaluated. If the order does not change,
then the model can be considered quite stable.
Detailed descriptions of sensitivity analysismethods
are provided in several texts listed in the references.

The main difference between this and error prop-
agation methods is that sensitivity analysis requires

prior understanding of data and errors, whereas
error propagation is a process by which errors are
introduced into the analysis. Sensitivity analysis
involves a number of methods aimed at determining
the degree towhich the result is affect by changes in
the input data and decision rules (and weights); it is
a measure of the robustness of a model.

17.5.5 Result validation (decision rule
uncertainty)

Multi-criteria analysis is often carried out with little
consideration of the meaning, relevance or quality
of the output solution or the effect of potential errors
it contains. Themulti-criteria evaluation procedures
discussed here and in the next chapter provide a
means to allow for, quantify and reduce certain
varieties of uncertainty, but it is in the final stages
more than any other that the validity of the result
should be questioned and tested. This often means
some kind of ‘blind’ test to determine the validity of
the output suitability map. To do this, some reliable
‘ground truth’ information is required. This could
come from a physical ground test but this is in itself
subjective. What is really needed is an objective
measure of the effectiveness of the result, revealing
how predictive it is.

There are several methods for cross-validating or
estimating the success of a particular result using
some training data. This refers to the use of a
partitioned dataset, with one part used in the analy-
sis and the other retained for confirming or testing
the result. The ground truth data are usually provid-
ed by some known occurrence data, such as known
landslide locations or mineral occurrences. Awide-
ly used approach utilizes the confusion matrix
which we encountered in Section 8.5.2.

Several other error measures are used, which are
based on a pairwise comparison approach, such as
the kappa statistic, which describes the agreement
betweenmeasured and observed spatial patterns, on
a scale between 0 and 1, and is described formally in
Section 8.5.2 and simply as follows:

k ¼ pðaÞ� pðeÞ
1� pðeÞ ð17:3Þ

where p(a) represents the relative observed agree-
ment among the input values and p(e) represents the
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probability that any agreement is caused by chance.
If there is complete agreement then k¼ 1; if the
opposite is true and there is no agreement then
k� 0. Cohen’s kappa statistic is only applicable in
cases where two inputs are compared. Avariation of
this can be used to consider multiple inputs. In
Section 8.5.2, we have already presented the kappa
coefficient derived from the confusion matrix for
classification accuracy assessment with an example
of multiple classes.

Other methods include the holdout or test-set, k-
fold and leave-one-out cross-validation (LOOCV)
methods. The holdout or test-set method involves a
random selection of, for example, 30% of the data
which are kept back from the analysis to act as test
data. If data are not plentiful this may be unaccept-
able; we may not wish to waste 30% of the input
data. The k-fold cross-validation method is slightly
less wasteful and involves the random division of
the dataset into k subsets, where a regression is
performed k times on the subsets. Each time one
subset is used as the test set and the other k� 1
subsets are used as the training data, then the
average error from the k regressions is derived.
The leave-one-out method involves the iterative
removal of one test data point, which is equivalent
to the k-fold method taken to the extreme, where
k¼ n (n being the number of test data points). This
last method is useful if you have an independent set
of very few ground truth data points. The entire
analysis can be run iteratively, each time with one
test data point removed, and the success of predic-
tion examined each time. In this way, prediction
curves can be constructed to give an idea of the
effectiveness of the model and data used.

17.6 Summary

Uncertainty is an area of very active research within
spatial analysis and remote sensing since the vol-
ume of data and our access to it are both growing.
Clearly, what we do as geospatial scientists with our
digital data inGIS is fraught with dangers and vague
possibilities. These problems are often, alarmingly,
overlooked. They cannot be avoided but there are
things we can do to minimise the risks and allow for
the uncertainties and errors. Whether we are be-
coming more or less critical of data quality and
reliability is a moot point but it is certain that we
should continue to develop tools and understanding
to keep pace with these trends.

Questions

17.1 List some examples of phenomena that cannot
be realistically described by rigid (Boolean)
functions and describe some fuzzy alterna-
tives for each.

17.2 Why is error tracking important?
17.3 Why is it important to quantify uncertainty in

GIS?
17.4 What are the main types of uncertainty and

how do they affect the analysis?
17.5 What developments should GIS software pro-

vide in future to help deal with uncertainty?
17.6 Why is validation important in multi-criteria

evaluation problems?
17.7 What can standards and benchmarks contri-

bute?
17.8 How significant are metadata in this context

and why?
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18
Complex Problems
and Multi-Criteria Evaluation

18.1 Introduction

This branch of GIS activity is sometimes referred to
as ‘advanced spatial analysis’, a term that tends to
make it sound more complicated than it actually is.
Certainly, it tends not to be the kind of everyday
activity carried out by the mainstream of GIS users
but is popular within the realm of the geosciences
since it provides an elegant mechanism for tackling
the complex processes of nature. Multi-criteria
evaluation is in itself a topic of growing develop-
ment and is sometimes considered not strictly part
of GIS but an area of overlap with it, in which there
is potential for shared gain. We observe that the use
of multi-criteria decision analysis has grown con-
siderably over the past 10–15 years, resulting in
what is now a well-established body of research on
this topic. Unsurprisingly, the use of the simplest
methods greatly outnumbers that of the more com-
plex procedures.

Any procedure that uses spatial data to satisfy a
particular request could be described as ‘spatial
analysis’ and often is. This chapter deals with
the procedures by which we deal with complex
geospatial problems to which there may be many,
potentially unknown, contributing processes and
pieces of evidence. These procedures incorporate
the conversion of real-world problems into a set of

abstract quantities and operations, the accommoda-
tion of the vagaries of the natural environment, and
of ‘unknowns’ quantities, to produce a realistic and
practical solution to the original problem. The terms
‘criteria’ and ‘factor’ tend to be used interchange-
ably in this chapter in reference to themultiple input
layers; however, ‘factor’ is used only in reference to
continuously sampled (variable) data, whereas
‘criteria’ is used in a more general sense to both
categorical and variable inputs.

Data generated from modern-day surveys and
exploration campaigns are not only diverse but
voluminous. Sophisticated topographic, geological,
geochemical, remote sensing, geophysical (high-
resolution ground and airborne) surveys not only
make the analysis more quantitative (hopefully) but
also make interpretation more difficult. A success-
ful result lies in the effective processing of the data,
extraction of the relevant factors and integration of
these factors into a single ‘suitability’ map or index.

Over the past decade or so, many techniques have
evolved to exploit large datasets and construct maps
that illustrate, for example, howmineral potential or
prospectivity changes over an area (Knox-Robinson
and Wyborn, 1997; Chung, Fabbri and Chi, 2002;
Chung and Keating, 2002), or how slope instability
(or vulnerability to slope failure) varies across an
area (Chung and Fabbri, 2003, 2005; Wadge, 1988;
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Mason and Rosenbaum, 2002; Liu et al., 2004a, to
name but a few), or how rapid surface soil erosion
can be discriminated from other kinds of small-
scale surface change (Liu et al., 2004b). These kinds
of analyses (often referred to collectively as
‘modelling’ even though it really is not) demand
the abstraction of reality, i.e. the representation of
physical properties numerically, and the application
of statistical approaches to accommodate natural
variations.

In this chapter, we describe the main approaches
and point to other more detailed texts, where appro-
priate. Generally speaking, and whatever the appli-
cation area, the steps involved follow a similar path,
always beginningwith the definition of the problem,
through data preparation to the production of a
result and its validation, followed by some recom-
mendations for action ‘on the ground’. These phases
are illustrated in Figure 18.1.

18.2 Different approaches and
models

There are a number of different approaches tomulti-
criteria decision making and analysis, with the aim
of estimating ‘suitability’ or ‘favourability’ across a
region, some of which pre-date GIS. They are often
divided into two broad categories: the knowledge-
driven approach (conceptual) and data-driven ap-
proach, and of the latter there are two further kinds.
The first is empirical and tries to identify significant
spatial relationships, and the second uses artificial

intelligence and neural networks objectively to
recognize patterns in the data.

18.2.1 Knowledge-driven approach
(conceptual)

This approach generally involves a specific model
for an individual case or area. The ‘model’ is then
broken down to its constituent parts to identify the
significant contributing criteria. It is a method
commonly used for hazard mapping but also in
mineral exploration, especially in its early stages,
perhaps on a regional scale or to identify areas for
more detailed work. A database is then constructed
which contains data appropriate to the description
of the criteria. The criteria are then combined in
such a way as to identify areas of potential.
Dempster–Shafer theory (DST) (Section 18.5.5)
and the analytical hierarchy process (AHP)
(Section 18.5.6) fall into this category.

18.2.2 Data-driven approach (empirical)

This approach ismost commonly applied tomineral
prospectivitymappingwhere it exploits pre-existing
knowledge of a particular type of mineral deposit,
how it relates to its surroundings and its mode of
formation. In this type of intuitive approach, the aim
is to predict areas which are geologically similar to
other knownmineral deposits butwhich havenot yet
undergone any systematic exploration.

Figure 18.1 Conceptual framework for multi-criteria spatial analysis
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For this, and the knowledge-driven approach,
there are usually three steps involved: the identifi-
cation of relationships, the quantification of those
relationships as layers and then the integration of
the layers. Research in this area has tended to
concentrate on the third step and, as a result, there
are an increasing number of techniques available,
ranging from thevery simple (Boolean set theory) to
rather more complex algebraic, weights of evidence
and fuzzy logic methods.

18.2.3 Data-driven approach (neural network)

The application of neural networks and other
data-mining techniques involve the process of
‘learning’ and ‘pattern’ recognition from the data.
Unlike the knowledge-driven and empirical data-
driven approaches, the neural network approach
evaluates all inputs simultaneously by comparison
with a training dataset. This approach is particu-
larly suited to very large data volumes where the
number of significant factors and possible combi-
nations is potentially huge, so the individual
handling of layers and spatial relationships be-
comes impractical. Success relies heavily on the
training or learning process and so, once trained
for a particular case, the system must be retrained
before it can be applied to any other case. In
general, this approach is very demanding compu-
tationally and generally less commonly applied
than the previous two, so we will not attempt to
cover it in this book.

18.3 Evaluation criteria

Criteria are usually evaluated within a hierarchical
structure, some consideration of which is necessary
before the data are prepared. The overall objective
of the work and any subordinate objectives should
be identified (see Figure 18.2) before the requisite
criteria may be identified to achieve the objectives.
Once the hierarchy of objectives and criteria is
established, each criterion should be represented
by a map or layer in the database. Each chosen
criterion should ideally be independent and unam-
biguous. Each must also be represented in common
units, otherwise, when the layers are combined, the
value units of the result will be meaningless.

Let’s consider as an example the problem of slope
stability assessment, as a principal objective, be-
neathwhich are several sub-objectives (as illustrated
in Figure 18.2). The latter may represent intermedi-
ary steps in achieving the principal objective or
valuable end products in their own right. Each of
the sub-objectives demandsmultiple input criteria to
satisfy their purpose, for example three layers re-
presenting the variable mechanical properties of
rocks and soils, groundwater levels and slope gradi-
ent may be required to produce a layer representing
conditioning engineering factors, as a factor of
safety measure. All the sub-objective layers may
then be combined to produce the overall slope
stability hazard assessmentmap. This mapmay then
in turn be used to give predictions of the potential
environmental states, for example if the area is
stable, stable only in the short term or unstable.

Figure 18.2 Schematic illustration of a multi-objective, multi-criteria evaluation system, under the main objective
heading of slope stability analysis and with several possible outcomes (or environmental states)
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An alternative example could be the evaluation of
mineral prospectivity (as the principal objective)
where the sub-objectives for the same geographic
area could be evaluation of the potential for several
materialsofeconomicvalue, suchasgold,nickeland
base metals. Each sub-objective has a set of specific
input criteria and while these may be used by more
than one sub-objective, they may be prepared, re-
classified and rescaled uniquely for each sub-
objective. In each case, the end result is a map
showing the variation in prospectivity (or suitability
for exploration) for a given commodity over a given
area. Thuswe can see the distinction betweenmulti-
objective and multi-criteria decision making. The
identification of both the significant input criteria
and thevarious sub-objectives is therefore an impor-
tant step. Following this the appropriate datamust be
identified and prepared, to represent these criteria.

In choosing the criteria, there are twoproblematic
situations: too many criteria, so that the decision-
making process becomes too complicated to
understand; or too few criteria, causing an oversim-
plification of the problem. Poor understanding may
cause the former and the latter is usually caused by
data shortage.

There are a number of methods for selecting
criteria, such as by researching past cases or by
conducting a survey of opinions. As mentioned in
the previous chapter, input criteria are generally of
two types: continuous (later referred to as factors)
and thematic (later referred to as constraints in some
situations). The continuous type represent spatially
variable, continuously sampled phenomena, often
containing values on interval, ratio and cycle scales,
such as those described in Chapter 12. The thematic
type comprise representations of discretely sample
phenomena, usually containing values on the nomi-
nal or ordinal measurement scale (as described in
Chapter 12). The input criteriamust be prepared and
scaled, using operations and procedures described
in Chapter 14, in such a way as to contribute
correctly towards the end result.

18.4 Deriving weighting
coefficients

In the process of establishing the structure of the
model, it generally becomes clear that some criteria

play a more significant role than others in leading to
the outcome. Having identified and prepared the
input criteria, the next step is to assess and quantify
their relative significance. To achieve this, the cri-
teria must be ordered and a mechanism identified to
describe the order numerically; using ranking and
weighting procedures. Deciding on ranking and
weighting is perhaps the most difficult aspect of
multi-criteria evaluation problems, and it common-
ly requires discussion, field verification and itera-
tive modification.

There are many weight derivation approaches
and these differ in their complexity, accuracy and
method.Weights should not be considered as simple
indicators of criterion significance because they
should allow for changes in the range of factor
values as well in as the significance of each factor.
The reason for this is that a factor weight could give
an artificially small or large effect on an outcome
simply by increasing or decreasing its range of
values, for example weights in the range of
1–1000 will have a far greater effect than those in
the range 1–10. Weights applied to the criteria
should always sum to 1, so thatX

wi ¼ 1 ð18:1Þ
where there are n criteria and where the weights (w)
range over w1, w2, w3, . . ., wn. Most multi-objective
and multi-criteria evaluation procedures and deci-
sion-making processes involve the combination of a
series of input variables, and it is highly likely that
these inputs will contribute to the outcome to vary-
ing degrees. If their significance in contributing to
the outcome is not equal, then some means of
quantifying those contributions is necessary. Many
types of weighting procedures have been proposed
to allow this, and these include rating, ranking,
pairwise comparison and trade-off analysis, some
of which are more popular than others.

18.4.1 Rating

Rating involves the assignment of values on rela-
tive scales of significance, for example 0 to 10 or
100. One popular method, referred to as point
allocation, involves the identification of a number
of points or scores among the input criteria. For
instance, if a 0–100 scale is chosen and there are
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three input criteria, a value (score) of 60 out of
100 could be assigned to the most significant
criterion, 30 to the next and 10 to the last. The
resultant weights would then become 0.6, 0.3 and
0.1. Alternatively, in the ratio estimation method,
scores are assigned to the most and least signifi-
cant criteria; the latter is then used as the refer-
ence from which all other ratio scores are calcu-
lated. Criteria are ranked and scored on a relative
scale, as in the point allocation method, and then
the score of the least significant one is divided by
each other criterion score to give a weight, which
is then normalized by the sum of weights. The
process is repeated for the second least significant,
the third least significant, and so on until all
criteria have calculated ratio weight values. The
result is then a measure of the difference between
lowest and highest values for a particular criterion
in comparison with those of the first (least signif-
icant) criterion.

18.4.2 Ranking

Here the criteria are first arranged in rank order
according to their considered relative significance
in affecting the outcome. The weights are then
derived by one of a number of popular methods,
summarized as follows. In all methods, the weights
are normalized by the sum of the weights for all
criteria:

1. Rank sum: This refers to the normalized sum-
mation of weights derived for each criterion, as
follows:

wi ¼ n� rj þ 1Pðn� rk þ 1Þ ð18:2Þ

where wi is the normalized weight for the ith
criterion, n is the number of criteria being eval-
uated, rj is the rank position of the ith criterion,
and the criteria being evaluated (k) range over
k¼ 1, 2, 3, . . ., n.

2. Rank reciprocal: This involves calculation of
the weight reciprocals, normalized by the sum
of weights:

wi ¼ 1=rjPð1=rkÞ : ð18:3Þ

3. Rank exponent: In this case, a ‘most significant’
criterion is identified and a variable is set to
represent it. It is then used as a power with which
to multiply the normalization:

wi ¼ ðn� rj þ 1ÞpP ðn� rk þ 1Þp : ð18:4Þ

A weight is specified for the most significant
criterion (p). The value of p is then solved
iteratively and the weights are derived. The
higher the value of p, the more sharply the values
of the normalized weights rise with increasing
significance. If p¼ 0 theweights will be equal in
value; if p¼ 1 the result is equivalent to the rank
sum of weights. So this method allows a certain
amount of control over or trade-off between the
weights.

These three methods involve only relativeweight
‘approximation’ so that the larger the number of
criteria, the less appropriate the method becomes.
They are therefore considered acceptable for cases
with few input criteria (Table 18.1).

18.4.3 Pairwise comparison

The pairwise comparison matrix (PCM) method
was created and developed by Saaty (1980) for
use within the analytical hierarchy process (de-
scribed in Section 18.5.5). The method has re-
ceived criticism for its abstraction from the real
measured or reference scales of the input criteria.
It is therefore vital that the input criteria are
normalized correctly and to common scales before
combination. The method is, however, flexible,
easy to understand (since only two criteria are
considered at a time) and appropriate for collec-
tive and iterative discussions of weighting. This
method is incorporated into the decision support
section of the Idrisi software suite. There are three
steps involved, and these are summarized as fol-
lows and illustrated using slope stability assess-
ment as an example:

1. Construction of the PCM: A matrix is con-
structed where every input criterion is compared
with every other and is given a score representing
its significance in contributing to the outcome.
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The values in the matrix are assigned from a
relative scale of importance between 1 (equal
importance) and 9 (extreme importance). Recip-
rocal values can be used to indicate the reverse
relationship, for example 1/9 indicating that one
factor is extremely less important than another.
The values on the diagonal are always 1, where
identical criteria are compared, and the values in
the upper right part of the matrix are reciprocals
of those in the lower left part. The assigned value
scale is described in Table 18.2 and an example is
given in Table 18.3.

2. Derivation of weights: The weights are pro-
duced from the principal eigenvectors of the
PCMand are derived by hand using the following
method. The values in each column of the matrix
are summed, to give column marginal totals. A
second matrix is then generated by dividing each
matrix value by its column marginal total. These
values are then averaged across the rows to derive
the weight for each criterion.

3. Calculation of a consistency index, within the
matrix: This ensures that the logical relation-
ships between the criteria are represented fairly.
Thevalue of this ratio should be as lowaspossible,
indicating that the relative comparisons have
been made sensibly. This process involves the
calculation of several component parameters as
follows:
(a) Weighted sum vector (WSV) – where the

first weight (w) is multiplied by the first
column value (ct) in the matrix, the second
by the second column, and so on. These
values are then summed over the rows to
give the WSV:

WSV ¼
Xn
i¼1

wct: ð18:5Þ

(b) Consistency vector (CV) – here the WSV is
divided by the criterion weights.

(c) Average consistency vector (l) – this is
calculated for all the criteria.

(d) Consistency index (CI) – since there are
always inconsistencies within the matrix,
l is always greater than or equal to the
number of input criteria (l� n) for any
reciprocal matrix. The closer the value of
l to n (l¼ n in an ideal case), the more
consistent the matrix. So l � n represents aTa
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good measure of consistency and CI as an
estimate of the average difference gives a
good judgement of consistency:

CI ¼ l� n

n� 1
: ð18:6Þ

Let’s consider the example of slope stability,
where there are four input criteria consid-
ered to have varying degrees of influence in
causing slope failure for an area. A PCM
could be constructed and used to derive the
criterion weights, using the method de-
scribed, as illustrated in Tables 18.3 and 18.4.

Using these scores and weights, the WSVand CI
can be derived for each criterion, as shown in
Table 18.5.

For this example, with four criteria contributing
to slope instability, the average consistency vector
(l) is

l ¼ 4:486þ 4:234þ 4:291þ 4:059

4
¼ 4:268

ð18:7Þ
and so the calculated value of CI is

CI ¼ 4:268� 4

4� 1
¼ 0:089 21: ð18:8Þ

Table 18.4 Second table generated from the column totals of those in Table 18.3 to derive the weights

PCM step 2 Slope Aspect Factor of safety Distance from drainage Weight

Slope 0.597 0.583 0.700 0.318 0.550
Aspect 0.199 0.194 0.140 0.318 0.213
Factor of safety 0.119 0.194 0.140 0.318 0.193
Distance from drainage 0.085 0.028 0.020 0.045 0.045

Marginal totals 1.000 1.000 1.000 1.000 1.000

Table 18.2 Table of significance estimations based on a nine-point scale. After Saaty (1980). Reciprocal values
can also be used (see Table 18.3 below)

Significance Value Significance Value

Extreme importance 9 Moderate to strong importance 4
Very to extreme importance 8 Moderate importance 3
Very strong importance 7 Equal to moderate importance 2
Strong to very strong importance 6 Equal importance 1
Strong importance 5

Table 18.3 Pairwise comparison matrix, used to assess relative factor significance, in contributing to slope
instability, and to calculate criterion weights as shown in Table 18.4. Note that the table should be read from the
left, along the rows, so that slope is considered themost significant and distance from drainage the least significant

PCM step 1 Slope Aspect Factor of safety Distance from drainage

Slope 1 3 5 7
Aspect 1/3 1 1 7
Factor of safety 1/5 1 1 7
Distance from drainage 1/7 1/7 1/7 1

Marginal totals 1.68 5.14 7.14 22.00
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A value of 0.089 21 would be considered to repre-
sent acceptable consistency within the PCM.

18.5 Multi-criteria combination
methods

Multi-criteria evaluation (MCE) is a process in
whichmultiple layers are aggregated toyield a single
output map or index of evaluation. Often this is a
map showing the suitability of land for a particular
activity. It could be a hazard or prospectivity map or
some other parameter that is a function of multiple
criteria. Several methods are described here, in order
of complexity: Boolean combination, index-overlay,
algebraic combination, weights of evidence model-
ling (Bayesian probability),Dempster–Shafer theory
(DST),Weight linear factors in combination (WLC),
otherwise known as the analytical hierarchy process
(AHP), fuzzy logic and vectorial fuzzy modelling.
Weights of evidence modelling, WLC, AHP, vecto-
rial fuzzy modelling and DST can all be considered
as providing fuzzy measures since all allow uncer-
tainty to be incorporated in someway, either directly
through the use of fuzzymembership sets, or through
probability functions or some other gradational
quantities.

18.5.1 Boolean logical combination

This represents the simplest possible method of
factor combination. Each spatial relationship is
identified and prepared as a map or image where

every location has two possible conditions: suitable
or unsuitable. One or more of the standard arithme-
tic operators is used to combine the spatial relation-
ship factors into a single map. The Boolean AND
combinatorial operator ismost commonly used, and
retains only those areas that are suitable in all input
factors. Alternatively, the combinatorial Boolean
OR can also be used, which represents the concep-
tual opposite ofAND, andwill always result inmore
or larger areas being categorized as suitable. The
former represents the ‘risk averse’ or conservative
of the two methods, and the latter is the more ‘risk
taking’ or liberal of the two. This method is simple,
conceptually and computationally, but is perhaps
rather oversimplistic, since there is no allowance for
gradational quantities or for other forms of
uncertainty.

18.5.2 Index-overlay and algebraic
combination

Here criteria are still categorical but they may
comprise more than two discrete levels of suitabil-
ity. These are usually represented as ordinal-scale
numbers, so that a location with a value of 2 is more
suitable than a location with a value of 1 but is not
twice as suitable. The resultant suitability map is
constructed by the summation of all the input
factors: the higher the number, the more suitable
the location. This approach is also simple and
effective but also has some drawbacks, since the
imposed criteria classes are subjective and they
behave like weights so that a factor divided into
10 levels will have greater effect on the result than

Table 18.5 Derivation of the consistency index (CI) using the values in Table 18.3 and the weights derived in
Table 18.4

PCM step 3 Weighted sum vector (WSV)
Consistency
vector (CV)

Slope (0.55)(1) þ (0.213)(3) þ (0.193)(5) þ (0.045)(7) ¼ 2.465 4.486
Aspect (0.55)(0.33) þ (0.213)(1) þ (0.193)(1) þ (0.045)(7) ¼ 0.901 4.234
Factor
of safety

(0.55)(0.2) þ (0.213)(1)þ (0.193)(1)þ (0.045)(7) ¼ 0.828 4.291

Distance
from drainage

(0.55)(0.143)þ (0.213)(0.143)þ (0.193)(0.143)þ (0.045)(1)¼ 0.181 4.059
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one divided into only 3 levels. Ideally, therefore, the
input datasets should be scaled to the same number
of classes. The result is also unconstrained in that an
increase in the number of input criteria causes an
increase in the range of values in the suitabilitymap.

The criteria are combined using simple summa-
tion, or arithmetic or geometric mean operators,
according to the desired level of conservatism in the
result. Use of the arithmetic mean is more liberal in
that all criteria and locations pass through to the
result even if a zero is encountered. The geometric
mean can be considered more conservative since
any zero value causes that location to be selectively
removed from the result. These different operators
should be used selectively to combine input criteria
in different decision-making situations. For in-
stance, where there is considerable confidence
about the particulars of the case, i.e. there is
decision rule confidence, a more risk-taking geo-
metric mean method might be applicable. Con-
versely, if there are plentiful data but a great deal
of decision rule uncertainty, the more risk-averse
arithmetic mean may be appropriate, allowing all
values and positions through to the end result. A
research case study, in which an index-overlay
combination method based on the geometric mean
is used for landslide hazard assessment, is presented
in Section 21.2.

The index-overlay method can be modified and
improved on by replacing the ordinal-scale numbers
with ratio-scale numbers, so that a value of 2 means
the location is twice as suitable as a location with a
value of 1; this removes the need for further scaling.
Criteria combination can then proceed in the same
way by summation or arithmetic and geometric
mean.

18.5.3 Weights of evidence modelling based
on bayesian probability theory

One of the most widely used statistical, multi-
criteria analysis techniques is theweights of evidence
method, which is based on Bayesian probability.
Here the quantitative spatial relationships between
datasets representing significant criteria (input evi-
dence) and known occurrences (outcomes) are
analysed using Bayesian weights of evidence proba-
bility analysis. Predictor maps and layers are used as

input evidence. The products are layers representing
the estimated probability of occurrence of a particu-
lar phenomenon (according to a hypothesis) and of
the uncertainty of the probability estimates. This
involves the calculation of the likelihood of specific
values occurring or being exceeded, such as the
likelihood of a pixel slope angle value exceeding
a certain threshold, as part of a slope stability
assessment.

Bayesian probability allows us to combine new
evidence about a hypothesis on the basis of prior
knowledgeor evidence. This allowsus to evaluate the
likelihood of a hypothesis being true using one of
more pieces of evidence. Bayes’ theorem is given as

pðhjeÞ ¼ pðejhÞ � pðhÞP
n
pðejhnÞ � pðhnÞ ð18:9Þ

where h represents the hypothesis and there are n
possible, mutually exclusive, statistically indepen-
dent outcomes; e is the evidence (some kind of
observation or measurement); p(h), the prior proba-
bility, represents the probability of the hypothesis
being true regardless of any new evidence; whereas p
(e | h) represents the probability of the evidence oc-
curring given that the hypothesis is true, i.e. the
conditional probability; and p(h | e), the posterior
probability, is the probability of the hypothesis being
true given the evidence.

One assumption considered here is the indepen-
dence, or lack of, between the input evidence layers.
If two evidence layers, e1 and e2, are statistically
independent, then the implied probabilities of their
presence are

pðe1je2Þ ¼ pðe1Þ and pðe2je1Þ ¼ pðe2Þ; ð18:10Þ

i.e., the conditional probability of the presence of e1
is independent of the presence of e2, and vice versa.
If however the two variables are conditionally in-
dependent with respect to a third layer, t, then the
following relationship exists:

pðe1 \ e2jtÞ ¼ pðe1jtÞpðe2jtÞ: ð18:11Þ

If e1 and e2 are binary evidence layers for an area
and t represents known target occurrences in that
area, then the following allows us to estimate the
number of targets that might occur in the area of
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overlap between e1 and e2 (i.e. where both are
present):

nðe1 \ e2 \ tÞ ¼ nðe1 \ tÞnðe2 \ tÞ
nðtÞ ð18:12Þ

where the predicted number of target occurrences in
the overlap will equal the number of target occur-
rences in e1 times the number of target occurrences
in e2, divided by the total number of target occur-
rences, if the two variables are conditionally inde-
pendent (Figure 18.3). If the total estimated (pre-
dicted) number of targets is larger than the actual
number of occurrences, then the conditional inde-
pendence can be considered to be ‘violated’ and the
input variables being compared should be checked.

When input layers are being prepared at the start
of the MCE process, the binary evidence layers
should be compared, for example in a pairwise
fashion, to test for conditional independence. If
necessary, problematic layers should be combined
to reduce the conditional independence effect or
they should be removed.

These descriptions seem rather abstract in them-
selves, sowe could consider a simple example, with
one target occurrence dataset and one evidence
layer, to explain the principle better. If we take
mineral exploration as an example, and a dataset
of 100 samples, represented as a raster of 10� 10
pixels; of the 100 samples, there are five gold
occurrences. So there are two possible mutually
exclusive outcomes, containing gold or not contain-
ing gold, i.e. n¼ 2.

It appears that the probability of finding gold is
0.05 and that of not finding gold, 0.95; this is the prior
probability of finding gold in this area. The new
evidence introduced in this case is a layer represen-
ting a geophysical parameter (such as total magnetic
field). This layer contains an area of anomalously
high values so a reclassified evidence layer, contain-
ing two classes (anomaly or no anomaly), is intro-
duced. It is foundthat fourof thefivegoldoccurrences
lie within the area characterized as anomalous, so it
seems that thechancesofencounteringgoldaremuch
highergiven thepresenceof thegeophysical anomaly
since 0.8 of the pixels that contain gold are alsoon the
anomaly. Of the 100 pixels, 95 contain no gold but
25 of these are also geographically coincident with
theanomaly, so that0.275ofpixelswithnogoldoccur
in the anomaly. Using these values, the probability of
findinggold given the presence of the anomaly, or the
posterior probability, will therefore be

pðhjeÞ ¼ 0:80� 0:05

ð0:80� 0:05Þþ ð0:275� 0:95Þ
¼ 0:04

0:04þ 0:261
¼ 0:133

ð18:13Þ
which is greater than 0.05, the p(h). And in a similar
way, the posterior probability of finding gold where
there is no measured anomaly will be

pðhjeÞ ¼ 0:20� 0:05

ð0:20� 0:05Þþ ð0:725� 0:95Þ
¼ 0:01

0:01þ 0:689
¼ 0:0143

ð18:14Þ
which is less than 0.05, the p(h).

So, after the introduction of new evidence (in this
case the presence of the anomaly), the posterior
probability of finding gold is considerably greater
than without that evidence: 0.133 as opposed to
0.05. Therefore the introduction of various new
pieces of evidence (representing significant criteria)
to the analysis increases our chances of finding the
target, and of making good decisions.

One limitation of this simple approach is that
gradational outcomes are not permitted, and only
two states of nature can exist: the pixel either
contains gold or does not contain gold. The out-
comes are said to bemutually exclusive.No account

Figure 18.3 Schematic illustration of the effect of
conditional independence
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of the variable amount of gold present can be made.
Similarly, the evidence layer contains only two
classes, anomalous or not anomalous, meaning that
a subjective judgement has been made in the re-
classification of this input evidence. To incorporate
gradational values we consider each input as a
continuous normal distribution function rather than
one with discrete levels. Probabilities are then
derived as multivariate vector and matrix calcula-
tions to give gradational predictions.

A method of factor combination based on Bayes-
ian probability is described in Section 22.1. This
case, set in south-east Greenland, involves prospec-
tivity mapping for a number of commodities, in
which there are reliable but limited data available
and reasonably good understanding about the de-
posit models.

18.5.4 Belief and Dempster–Shafer theory

DST is a knowledge-driven approach based on
belief functions and plausible reasoning, and is
used to combine separate pieces of evidence to cal-
culate the probability of an event or occurrence. The
theory owes its name to work by Shafer (Shafer,
1976) in extending the Bayesian theory of statistical
inference (Dempster, 1967 & 1968). The mathe-
matical derivations are also dealt with in great detail
in a number of other texts.

A limitation of many of the approaches described
so far is the assumption (requirement) that all the
input factors must contribute positively towards the
outcome; high input values are correlated with suit-
ability.As a consequence, there is noway to consider
evidence that seems to be contradictory to the main
hypothesis. DST allows the estimation of the likeli-
hood of suitability, or unsuitability, in addition to
estimates of plausibility and belief for any hypothe-
sis being evaluated. In traditional Bayesian proba-
bility the absence of supporting evidence for a
hypothesis is automatically assumed to support the
alternative hypothesis, unsuitability. The DST is
unique in allowing that ‘ignorance’ does not neces-
sarily support that alternative hypothesis and in
doing so provides a method for identifying areas
and ways to reduce uncertainty.

DST introduces six quantities: basic probability
assignment, ignorance, belief, disbelief, plausibil-

ity and a belief interval. It also provides estimates
of the confidence levels of the probabilities as-
signed to the various outcomes. The degree to
which evidence supports a hypothesis is known
as belief, the degree towhich the evidence does not
contradict that hypothesis is known as plausibility,
and the difference between them is referred to as
the belief interval; the last serves as a measure of
uncertainty about a particular hypothesis. Belief is
always less than or equal to plausibility. Belief in a
hypothesis is the sum of the probability ‘masses’ of
all subsets of the hypothesis. Plausibility is there-
fore an upper limit on the possibility that the
hypothesis could happen, i.e. it ‘could possibly
happen’ up to that value, because there is only
some evidence that contradicts this hypothesis.
Plausibility represents 1 minus the sum of the
probability masses of all sets whose intersection
with the hypothesis is empty or, in other words,
the sum of the masses of all sets whose intersec-
tion with the hypothesis is not empty. A degree of
belief or mass is represented as a belief function
rather than a probability distribution. Probabilities
are therefore assigned to sets of possibilities rather
than to single, definitive occurrences and this in-
corporates a measure of uncertainty.

Using another very simple example (see
Table 18.6), considering the hypothesis that a pixel
position contains no gold, we may have evidence
suggesting that the pixel area contains no gold, with
a confidence of 0.5, but the evidence contrary to that
hypothesis (i.e. pixel contains gold) only has a
confidence of 0.2. So for our hypothesis we have
a belief of 0.5 (lower limit) and a plausibility of 0.8
(upper limit). The remaining mass of 0.3 (the gap
between the 0.5 and 0.2) represents the probability
that the pixel may or may not contain gold; this
interval represents the level of uncertainty caused
by a lack of the evidence for the hypothesis.

The null hypothesis is zero by definition and this
represents ‘no solution’ to the problem. The
mutually exclusive hypotheses ‘Gold’ and ‘No
gold’ have probabilities of 0.2 and 0.5, respective-
ly. The universal hypothesis ‘Either’ represents the
assumption that the pixel contains something
(gold or not) and forms the remainder so that the
sum of the probability masses is 1. The belief value
for ‘Either’ consists of the sum of all three proba-
bility masses (‘Either’, ‘Gold’ and ‘No gold’)
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because ‘Gold’ and ‘No gold’ are subsets of
‘Either’, whereas the belief values for the ‘Gold’
and ‘No gold’ hypotheses are equal to their indi-
vidual probability masses since they have no
subsets. So the plausibility of ‘Gold’ occurring is
equal to the sum of probability masses for ‘Gold’
and ‘Either’; the ‘No gold’ plausibility is equal to
the sum of probability masses of ‘No gold’ and
‘Either’; and the ‘Either’ plausibility is equal to the
sum of probability masses of ‘Gold’, ‘No gold’ and
‘Either’. The hypothesis ‘Either’ must always have
100% belief and plausibility and so acts as a
‘checksum’ on the result.

Evidence layers are then brought together using
Dempster’s rule of combination, which is a gener-
alization of Bayes’ theorem. The combination in-
volves the summation of two input probability
masses and normalization to 1. If we use a simple
example with two input datasets (i and j), then

ec ¼ ðeiejÞþ ðeiujÞþ ðejuiÞ
b

ð18:15Þ

dc ¼ ðdidjÞþ ðdiujÞþ ðdjuiÞ
b

ð18:16Þ

uc ¼ uiuj
b

ð18:17Þ

where e¼ evidence (or belief) for input evidence
datasets i and j, d¼ disbelief, u¼ uncertainty
(which equals plausibility minus belief), ec¼ the
combined evidence, dc¼ the combined disbelief,
uc¼ the combined uncertainty and b¼ the normal-
ization factor. Here b is derived as

b ¼ 1� eidj � diej: ð18:18Þ

This method tends to emphasize the agreement be-
tweeninputevidenceandignoreallconflictsbetween
them via the normalization factor. The latter ensures
that evidence (belief), disbelief and uncertainty
always equal 1 (e þ d þ u¼ 1). Where conflicts
betweeninputevidenceareknowntobeofsignificant
magnitude, DST can produce meaningless results
and an alternative method should be sought.

18.5.5 Weighted factors in linear combination

This method is sometimes referred to as the analyt-
ical hierarchy process (Saaty, 1990), a decision-
making technique that allows consideration of both
qualitative and quantitative aspects of decisions.
The AHP method rather importantly accepts that:

. Certain criteria are more important than others.

. Criteria have intermediate values of suitability
(i.e. they do not need to be simply classed as
‘suitable’ or ‘unsuitable’).

Criteria can also be coded to behave differently.
Those acting as Boolean ‘constraints’ can be used
selectively to remove or ‘zero-out’ locations and
regions. Others, which are continuous or variable in
nature, are referred to as ‘factors’. The factors
should be combined in a way that reflects the two
points above and there are three important issues
surrounding this combination: determination of the
relative importance of each criterion; the standard-
ization or normalization of each factor (since each
must be on a consistent scale and must contribute in
the same direction towards suitability); and the
method of factor combination.

It is assumed to be unlikely that all factors will
have equal effect on the outcome. The assessment of
their relative importance involves derivation of a
series of weighting coefficients. These factor
weights control the effect that each factor has on
the outcome. The relative significance of each
factor, its influence on the other factors and on the
outcome need to be compared. This involves order-
ing the factors into a hierarchy of significance, and
assessment of their degree of influence on the
outcome and on each other.

TheWLCmethod allows a measure of suitability
in one factor to be compensated for in another
factor(s) through the use of weights. The general
approach of this method is as follows:

1. Identify the criteria (decide which criteria are
factors and which are constraints).

2. Produce an image or coverage representing each
criteria.

3. Standardize or scale each factor image (for in-
stance, using fuzzy functions), reclassifying to a
real-number scale (0 to 1), byte scale (0 to 255) or
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percentage scale (0–100). All must be scaled to
the same range and in the same direction so that
they each contribute either positively or nega-
tively (generally the former) towards the
outcome.

4. Deriveweighting coefficientswhich describe the
relative importance of each factor (by one of the
methods already described, usually by the PCM
method).

5. Linearly combine the factor weights with the
standardized factors and the constraints (usually
by aggregation) to produce the ‘suitability’ map.

The consequence of using an aggregationmethod
is that all candidate pixels entering the model pass
through to the end. At no point does an encountered
zero value cause termination of the model for that
pixel position. So while the factors are weighted in
terms of their significance, there is a total ‘trade-off’
between each factor value encountered: that is, a
low score in one factor can be compensated for by a
very high score in another.

The WLC method is popular but can in some
instances be considered too ‘liberal’ in its handling
of the data in the system, since it involves equal
ranking of the weighted factors and allows full
trade-off between them. Its factor aggregation
method can be likened to a parallel connection
system, which allows all input criteria to survive to
the end (the likelihood of the occurrence of a zero
is low). It is also possible that the relationships
between the input factors are not linear, in which
case a more complex model will be required.
In many cases, this parallel system may be appro-
priate but in others a harsher, more risk-averse
system may be better, one which enables certain
factors or combinations of factors to be eliminated

completely from the system, rather like a sequen-
tial connection system. Factor combination via
calculation of the geometric mean (as opposed to
the arithmetic mean) represents such a system in
which the occurrence of a zero rating terminates
the system and eliminates that location from the
analysis.

An illustration of thismethod applied using fuzzy
scaled inputs (see also Section 15.5.6) is described
in a research case study, in Section 21.3. The index-
overlay combination introduced in Section 18.5.2 is
the very simplest case of WLC.

18.5.5.1 Ordered weighted average
The ordered weighted average (OWA) represents a
refinement of theWLCmethod, where the degree of
trade-off between factors is controlled by a second
set of order weights. With full control over the size
and distribution of the order weights, the amount of
risk taking and degree of trade-off (or substitutabil-
ity) can be varied. Trade-off represents the degree to
which a low score in one criterion can be compen-
sated for by a higher score in another. The order
weights define the rank ordering of factors for any
pixel; they are not combined in the same sequence
everywhere.

In this way, the degree to which factors can pass
through the system is also controllable. Using one
arrangement of order weights, pixels may be elimi-
nated in some areas but permitted through in others.
Using another arrangement, all pixels may be per-
mitted through (equivalent to WLC).

After the first set of factor weights has been
applied, the results are ranked from low to high (in
terms of their calculated ‘suitability’ value). The
factor with the lowest suitability score is then as-
signed the first order weight and so on up to the

Table 18.6 Probability masses associated with the hypothesis that a pixel position contains no gold, under
Dempster–Shafer theory

Hypothesis Probability Belief Plausibility

Null (no solution) 0 0 0
Gold 0.2 0.2 0.5
No gold 0.5 0.5 0.8
Either (gold or no gold) 0.3 1.0 1.0
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factor with the highest suitability being assigned the
highest orderweight. The relative skew to either end
of the order weights determines the level of risk, and
the degree to which the order weights are evenly
distributed across the factor positions determines
the amount of trade-off (see Table 18.7).

For example, consider three factors a, b and c, to
which we apply weights of 0.6, 0.3 and 0.1, on the
basis of their rank order (the order weights sum to
1.0). At one location the factors are ranked cba,
from lowest to highest, and the weighted combina-
tion will be 0.6c þ 0.3b þ 0.1a. If at another loca-
tion, however, the factors are ranked bac, the
weighted combination will be 0.6b þ 0.3a þ 0.1c.
A low score in one factor can therefore be compen-
sated for by a high score in another; there is a trade-
off between factors.

Two parameters, AND/ORness and TRADEOFF,
are used to characterize the nature of an OWA
operation:

TRADEOFF ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P ðwi � 1=nÞ2

n� 1

s
ð18:19Þ

ANDness ¼ ð1jðn� 1ÞÞ
X

ððn� iÞwiÞ ð18:20Þ

ORness ¼ 1�ANDness ð18:21Þ
where n is the total number of factors, i is the order
of factors andwi is theweight for the factor of the ith
order. From the equation, ANDness or ORness is
governed by the amount of skew in the order
weights and the trade-off is controlled by the degree
of dispersion in the order weights.

For a risk-averse or conservative result, greater
order weight is assigned to the factors nearest the
minimum value. For a risk-taking or liberal result,
full weighting is given to the maximum suitability

score. If full weight is given to the factor with
minimum suitability score and zero to all other
positions, then the result will resemble that pro-
duced by the Boolean Min(AND) combination of
factors and will represent no trade-off between
factors. If full weight is given to the maximum
suitability score, then the result resembles Boolean
Max(OR). If all order weights are equal fractions of
1, then full trade-off is allowed and the result is
equivalent to the WLC.

Order weights control the position of the aggre-
gation operator on a continuum between the ex-
tremes of Min and Max, as well as the degree of
trade-off. Examples are shown in Table 18.7 and
illustrated conceptually by the decision strategy
space shown in Figure 18.4.

18.5.6 Fuzzy logic

Although the Bayesian and algebraic methods can
be adapted to accommodate the combination of
spatial continuously sampled data, there is a branch
of mathematics, fuzzy logic, which is ideally suited
for this purpose. Fuzzy logic represents a ‘superset’
of Boolean logic, and deals with variables that
incorporate some uncertainty or ‘fuzziness’. Since
fuzzy membership removes the requirements of
‘total membership’ of a particular class, it provides
an ideal way to allow for the possibility of a variable
being suitable or unsuitable. We have already de-
scribed how this can be used to incorporate uncer-
tainty within our analysis in the previous chapter.

The threshold values that define the fuzzy set
become the input parameters when preparing each
variable in our spatial analysis. The values are
chosen based on prior knowledge and understand-
ing of the data and decision rules. The type of

Table 18.7 Order weights for a five-factor example used by OWA

Rank 1st 2nd 3rd 4th 5th Description

Order weight 1 0 0 0 0 Risk averse, no trade-off
Order weight 0 0 0 0 1 Risk taking, no trade-off
Order weight 0 0 1 0 0 Average risk, no trade-off
Order weight 0.2 0.2 0.2 0.2 0.2 Average risk, full trade-off
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membership function we choose will depend on the
way the phenomenon contributes to the outcome;
positively or negatively, monotonically or symmet-
rically. The threshold values are applied according
to the user’s understanding and ‘ground’ knowledge
of the phenomenon, to best reflect their significance
on the result. An underlying assumption at this point
is that the relationship between the input factors and
the outcome is linear, but this may not necessarily
be so.

Each input factor is scaled according to the
chosen fuzzy membership function in preparation
for factor combination. All the factors must be
scaled in the same direction, i.e. they must all
contribute to the outcome in the same way, either
positively or negatively. In this way, the locations
which represent the most desirable characteristics
are all coded with either very high values or very
low values according to choice. An illustration of
the WLC method applied using fuzzy scaled inputs
is described in a research case study in Section 21.3.

The resultant fuzzy factor layers are then com-
bined in one of a number of ways. The simplest
option is via simple set theory using map algebra,
such as using Boolean logical intersection (AND)
and logical union (OR) operators.

A series of fuzzy operators have subsequently
been developed around set theory, for the combina-
tion of scaled (‘fuzzified’) input factors, namely

fuzzy AND, fuzzy OR, fuzzy algebraic product,
fuzzy algebraic sum and a fuzzy gamma function:

Fuzzy AND mc ¼ minðm1;m2;m3; . . . ;mnÞ
ð18:22Þ

Fuzzy OR mc ¼ maxðm1;m2;m3; . . . ;mnÞ
ð18:23Þ

Fuzzy NOT �m ¼ 1�m ð18:24Þ

where mc represents the combined fuzzy member-
ship function of n individual fuzzy inputs. These
operate in much the same manner as the Boolean
versions. The AND operator produces the most
conservative result, producing low values, and al-
lows only areas which are characterized by favour-
able conditions in all input layers to survive to the
end result. In contrast, the OR operator produces the
most liberal or risk-taking result and is suitable
when it is desirable to allow any favourable evi-
dence to survive and be reflected in the end result.

This simple combination may not be considered
suitable for the combination of multiple datasets
because it is possible that extremely high and low
values can propagate through to the final result. Two
operators have been developed to overcome this
problem: the fuzzy algebraic product (FAP) and the
fuzzy algebraic sum (FAS). The FAP is the combined

Figure 18.4 Decision strategy space in order weighted averaging. Modified after Saaty (1990)
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product of all the input values or fuzzy factors in the
following way:

mc ¼
Yn
i¼1

mi ð18:25Þ

where mc represents the FAP fuzzy membership
function for the nth input factor. Since the values
being combined are all fractions of 1, the values in
the final result are always smaller than the lowest
contributing value in any layer. The function can be
considered ‘decreasive’ for this reason. The FAS is
not a true sum and is derived by

mc ¼ 1�
Yn
i¼1

ð1�miÞ: ð18:26Þ

Here the reverse is true: the resulting value will
always be larger than the largest contributing value
in any layer, but is limited by the maximum value
of 1. This function therefore has the opposite effect
to the FAP and is considered ‘increasive’. Two
pieces of input evidence which favour the result
would reinforce one another in this method. It is
worth noting here that the output value is partly
affected by the number of input datasets: the more
the number of datasets, the greater the resulting
value. FAP and FAS can also be combined into a
single operation, called agamma function, which is
calculated as

mc ¼ ½FAS�g ½FAP�1� g

¼ 1�
Yn
i¼1

ð1�miÞ
" #g Yn

i¼1

mi

" #1� g ð18:27Þ

where the gamma parameter (g) varies between 0
and 1. When a value of 0 is chosen, the result is
equivalent to the FAP. When gamma is 1.0 the
result is equivalent to the FAS. A gamma value
somewhere between provides a compromise be-
tween increasive and decreasive tendencies of the
two separate functions. This method allows for
uncertainty to be incorporated and allows all the
input factors to contribute to the final result but has
the drawback that all the input factors are treated
equally. They must also contribute in the same
direction towards the outcome.

In this way, pieces of evidence can be combined
sequentially, in a series of carefully designed steps,
rather than in one simultaneous operation. This

gives more control over the final outcome
and allows the different input layers to be treated
differently, according to the understanding of the
layer’s contribution to the outcome.

18.5.7 Vectorial fuzzy modelling

In an attempt to improve on the above, the vectorial
fuzzy logic method has been developed (Knox-
Robinson, 2000) in the mapping of mineral pro-
spectivity or suitability. The fuzzy vector is defined
by two values, the calculated prospectivity (the
fuzzy vector angle) and confidence (the fuzzy
vector magnitude), the latter as a measure of simi-
larity between input factors. Using the vectorial
fuzzy logic method, null data and incomplete
knowledge can be incorporated into the multi-
criterion analysis. The ‘confidence’ value actually
performs several functions: it represents confidence
in the suitability value; the importance of each
factor relative to others; and it allows null values to
be used. The combination of the two values involves
calculating a vector for each spatial relationship
factor. The combined lengths and directions of each
vector provide the aggregate suitability. The closer
the value of the inputs, the longer the resultant
combined vector (cc) and the higher the confidence
level. Confidence is a relative measure of consis-
tency throughout the multi-criteria dataset for any
particular location. The two values are derived as
follows:

Fuzzy prospectivity :

mc ¼
2

p

� �
arctan

Xn
i¼1

cisinðpmi=2Þ
Xn
i¼1

cicosðpmi=2Þ

2
66664

3
77775

ð18:28Þ

Fuzzy confidence :

cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

cisin
pmi

2

� �" #2

þ
Xn
i¼1

cicos
pmi

2

� �" #2
vuut

ð18:29Þ
where mi is the fuzzy suitability value for the ith
factor input layer (0�mi� 1). Figure 18.5 shows
the concept of variable suitability (prospectivity)

256 PART TWO GEOGRAPHICAL INFORMATION SYSTEMS



represented as a vector using this method. In
Figure 18.5 a the vector quantity of suitability (m) is
given as the direction of the vector and the confidence
level (c) of that suitability value is represented by the
vector’s length. In Figure 18.5b two examples illus-
trate vectors of equal suitability (constant direction),
but of differing confidence levels (different lengths).
The vector (m2) is longer and therefore represents a
greater level of confidence in the suitability value, and
so the corresponding pixel would have a greater
influence on the final output value.

In Figure 18.6a, two input criteria with differ-
ent suitability values but equal confidence levels
provide a combined suitability value of 0.5
(the average m value) and a confidence level of
1.41 (derived simply by Pythagorean geometry);

the confidence level is lower since the two input
suitability scores are conflicting. In Figure 18.6b
the two inputs have identical suitability and con-
fidence level values, so they combine to give the
same suitability score of 0.5 but with double the
confidence level, cc¼ 2.0; from this result we can
be more confident that the result is more repre-
sentative of the true suitability at that position.

In this method all input factors must contribute
positively towards the outcome. The existence or
possibility of a trade-off between input factors is
considered undesirable or irrelevant in this meth-
od. Its use is therefore most appropriate when
there is considerable understanding about the
influence of each piece of evidence in leading to
the outcome; i.e., where there is considerable

Figure 18.6 Examples of the combination of two ‘fuzzy’ vectors: (a) two input criteria fuzzy vectors with equal
confidence but different suitability (prospectivity); and (b) two inputs with identical suitability and confidence
levels. Modified after Knox-Robinson (2000)

Figure 18.5 Illustration of variable prospectivity derived using the vectorial fuzzy modelling method. After Knox-
Robinson (2000)
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decision rule confidence but perhaps some data
uncertainties.

18.6 Summary

We have summarized in this chapter some of the
better known methods of criteria combination; the
list is not exhaustive, there are many variations and,
regardless of the level of complexity involved, they
all have strengths and weaknesses. It may be desir-
able, and is often appropriate, to use more than one
of the criteria combination methods described here,
i.e. to use a mixture of fuzzy and non-fuzzy opera-
tors within the samemodel. Certainly, none of these
methods can be considered correct or incorrect
when it comes to integrating spatial datasets or
combining multiple criteria. The important issue is
that each method is appropriate to a particular set of
circumstances and objectives, which should be
carefully considered before choosing that method.

It is important to note, however, that multi-
criteria analysis is often carried out with little
consideration of the meaning, relevance or quality
of the output solution or the effect of potential
errors it contains. Some methods for cross-
validation, error propagation and sensitivity anal-
ysis have already been described (in Chapters 15
and 17) and they are especially relevant here too.
The object of spatial analysis in these circum-
stances is to predict conditions beyond the loca-
tion or times where information is available. The
multi-criteria evaluation procedures discussed

here provide a means to allow for, quantify and
reduce certain varieties of uncertainty in achieving
these predictions, but not all types. So it is in the
final stages of such analysis, more than any other,
that the validity of the ‘prediction’ should be
questioned and tested. The paradox is that there
is always a solution but never a perfect solution
and we always want to know exactly how good
a solution is while the answer will for ever be
fuzzy.

Questions

18.1 What are the assumptions made in choosing a
weighting method?

18.2 Why is it important to know the measurement
scale of the input criteria?

18.3 What is the difference between order weights
and factor weights?

18.4 Which weighting method is the most appro-
priate for a group decision-making process?

18.5 Why are certain weighting methods subject to
uncertainty?

18.6 What are the chief differences between a
simple Boolean model and one that incorpo-
rates uncertainty?

18.7 What is the difference between probability
and posssibility, and how do these two con-
cepts help us in spatial analysis?

18.8 What more could be done to improve the
model and/or the validity of the result?
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Part Three
Remote Sensing Applications

In Parts One and Two of this book, we learnt the essential image processing and GIS techniques. Here we
will demonstrate, step by step, with examples, how these techniques can be used effectively in remote
sensing applications. Although many case studies are drawn from our own research projects in earth
sciences and the terrestrial environment, it is important to stress the generic sense of these examples in terms
of concept and methodology for wider applications. From this viewpoint, our aim is not to provide rigid
recipes for fixed problems but to provide guidance on ‘how to think’ and ‘how to approach’. When first
presented with a new project, beginners and students may feel a little lost, rather as in the Chinese saying
‘the tiger wants to eat the sky but doesn’t know where to bite’. We will be satisfied if this part serves as
a catalyst, to get you on the track of a real remote sensing application project.





19
Image Processing and GIS
Operation Strategy

In this chapter, we describe how the processing,
interpretation and analysis of multi-source image
and map data (in general, raster datasets) should
be approached to produce thematic maps for a
typical project. Following the discussion of basic
strategy, a simple example of digital geological
mapping, based on processing and interpretation
of Landsat-7 ETMþ imagery, is presented to
demonstrate the work flow from image processing
to map composition.

We suggest the following rules of thumb as
general guidance for operational strategy:

. Purpose: The aims and objectives of the project
should be the driving force behind the image
processing and multi-source data manipulation.
In other words, it should be application driven
rather than data processing driven. This is differ-
ent from algorithm development, which may be
triggered by application requirements but is
focused on the technical part of data processing
and its effectiveness; application examples serve
as demonstrators of the algorithm.

. Keep things simple: Recall from Figure P.1 in
Part One that this is not only true for image
processing but serves as good advice for an
application project. Nowadays image processing
and GIS software packages are so functional and

are supported by ever-increasing computing
power. It is far too easy to be dragged into a
complicated ‘computer game’ rather than focus
on the central theme of the project and to produce
the required result in the simplest and most
effective way. For learning purposes, we encour-
age students to experiment with all the relevant
processing techniques, while in a real operational
case the simplest, cheapest and most effective
method is the best choice. Simplicity is beauty.

. From simple to complex: Keeping things simple
does not necessarily mean they can be achieved
in a simple way. If simple image processing and
GIS techniques were adequate for all applica-
tions,more complicated and advanced techniques
would never be developed! Some key information
can only be enhanced, analysed and abstracted
using complex algorithms and methodology.
Starting at the simple end, with general image
enhancement techniques, will allow better com-
prehension of the scope and true nature of the
task. Only then should complex techniques be
configured and employed to reveal the specific,
diagnostic features of the intended targets, and to
extract the most crucial information.

. Reality checks: After you have performed some
processing and produced an exciting-looking
result, you should always ask yourself if the result
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is realistic: does it make sense? Performing this
kind of ‘reality check’ could involve correlating
the result with simpler images (e.g. colour com-
posites), other forms of analysis and/or published
information (if available). Such information may
in itself be insufficient, out of date, at too gross
a scale or geographically incomplete but, when
compared with your result, may collectively point
to your having produced something useful and
realistic. If all scant pieces of evidence point in the
same direction, you should be on the right track!

. Relationship between analysis and visualization:
A remote sensing application project normally
begins with image visualization and its final
results are often in the form of maps and images,
for which visualization is again necessary. As a
2D array of numbers, a digital image can easily be
numerically analysed. The results of the analysis
are not necessarily raster datasets but they can
always be visualized in one way or another. In
general, we are far more able to comprehend
complicated information graphically than numer-
ically. For remote sensing applications, visualiz-
ing and interpreting the results of every stage of
image processing and GIS analysis are essential
to help assess your progress and to decide on the
next step towards the final goal of the project.

. Thinking in three dimensions: Remote sensing
deals with nothing but images, and an image is
a 2D representation of 3D phenomena. For
centuries, we have tried every possible approach
to presenting the 3D Earth on a 2D plane, that is
projected maps, and therein lies the science and
engineering of geomatics and geodesy. Now,
thanks to the development of computer gra-
phics, moving between 2D and 3D representa-
tions is much easier. The digital form of topo-
graphic maps, namely the DEM, is in itself a 2D
raster dataset representing the 3D topography of
the Earth’s surface. Using the powerful 3D graph-
ical functions in modern image processing and
GIS software packages, we can easily simulate the
3D environment using 2D data, by draping
multi-spectral satellite colour composite images
over a 3D perspective view of a DEM (as de-
scribed in Chapter 16). Thinking and viewing in
three dimensions can make some tricky informa-
tion in 2D images suddenly obvious and clearly
understandable. In fact it may reveal informa-
tion that was completely unknown from 2D

observation.For instance, a low-angle reverse fault
appears to be a curved line in an image, depending
on its intersection relationship with topographic
slopes. The 3D thinking and visualization make
you realize that it is a low-angle planar surface
rather than a steeply dipping curved one.

19.1 General image processing
strategy

Image processing is almost always the first step of
any remote sensing application project but it is often
given greater significance than it deserves. In fact,
one of the main objectives of image processing is
to optimize visualization of a particular thematic
dataset. Visual interpretation is therefore essential.
Thematic maps are the most important products of
remotely sensed imagery, and they are derived by
either visual interpretation or image segmentation
(computerized classification). Thus far, broadband
multi-spectral and SAR images are the most com-
monly used datasets. The image processing strategy
proposed in this section is most relevant to these
types of data, and its goal is the effective discrimi-
nation of different spectral and spatial targets.
We use the word ‘discrimination’ advisedly in this
context; in general, it is only possible to differentiate
between rocks, soils and mineral groups using
broadband image data, rather than identify them.

In contrast, the processing of hyperspectral image
data is to achieve spectral target identification, to
species level in the case of rock-forming minerals,
and thus has a different strategy. Many people make
themistakeeitherof thinking thathyper-resolution is
the answer to all problems, or of being put off
investing in such technology at all because they do
not understand its role or are suspicious of its ac-
claimed capability. A hyperspectral dataset
is acquired using an imaging spectrometer or
hyperspectral sensor, which is a remote sensing
instrument that combines the spatial presentation of
animagingsensorwith theanalyticalcapabilitiesofa
spectrometer. Such a sensor system may have up to
several hundred narrow bands, with a spectral reso-
lution of the order of 10 nm or narrower. Imaging
spectrometersproduceanear-complete spectrumfor
every pixel of the image, thus allowing the specific
identification of materials rather than merely the
discrimination between them. A hyperspectral
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dataset trulyprovidesadatavolumeorcube.Here it is
more important to analyse the spectral signature of
each pixel than to perform general image enhance-
ment. The processing methodology and strategy are
therefore very different from broadband image pro-
cessing in many aspects, although the enhancement
for image visualization is still important. Consider-
ing that hyperspectral remote sensing is a broad and
important topic on its own, covering data processing
and application development, in this book we have
decided to discuss it only briefly and to focus instead
on broadband multi-spectral remote sensing.

When you begin a project, you should think
along the following lines and, broadly speaking,
in the following order:

1. What is the application theme and overall ob-
jective of the project?

2. What kind of thematic information do I need to
extract from remotely sensed images?

3. At what scale do I need to work? In other words,
what is the geographic extent and what level of
spatial or spectral detail is required within that
area?

4. What types of image data are required and
available?

5. What is my approach and methodology for
image/GIS processing and analysis?

6. How do I present my results (interpretation and
map composition)?

7. Who will need to use and understand the results
(technical, managerial or layperson)?

Once these steps have been thought through and
the data have been acquired, the generation of
thematic maps from remote sensing image data is
generally carried out in three stages:

1. Data preparation.
2. Processing for general visualization and thema-

tic information extraction.
3. Analysis, interpretation and finally map com-

position.

In the following sections, we describe the the-
matic mapping procedure in a linear sequence for
clarity. In reality, the image processing and image
interpretation are dynamically integrated. The
interpretation of the results of one stage of image
processing may lead to the image processing and

data analysis of the next stage. Often, you may feel
you have reached the end, after producing a won-
derful image; the subsequent interpretation of that
image may then spur you on to explore something
further or something completely different. A the-
matic map derived from remotely sensed image
may be used alone or as an input layer for further
GIS analysis, as outlined in Section 19.2.

19.1.1 Preparation of basic working dataset

19.1.1.1 Data collection
At the stage of sensor development, sensor configu-
ration (spectral bands, spatial resolution, radiomet-
ric quantization, etc.) is decided based on wide
consultation of application sectors, in an attempt to
provide capabilities that meet actual requirements,
subject to the readiness of the technology of course.
The data collection is, however, often dictated by
what is available, or what the budget will allow,
rather than what is actually required. As a result,
remotely sensed image datasets are generally aimed
at a broad range of application fields and somay not
be able to satisfy the most specific needs of some
cases. Within the context of these constraints we
should therefore always ask the following questions:
What is the purpose of the job? And which dataset
will be the most cost effective or will provide the
most information relevant to the purpose of the job?
In many ways, image processing aims to enhance
and extract thematic information that is not directly
sensed or distinctively recorded in any one single
image. Sometimes, it is a matter of detective work!

At theseearly stagesofchoosingandpreparing the
dataset, it is also important to consider the most
appropriate mapping scales for particular datasets,
or rather to choose the most appropriate data to suite
the mapping requirements of the task being under-
taken. Ifworking at a country-wideor regional scale,
it would be rather unwise to select data of very high
resolution (VHR) for the work since the costs of
doing so might be prohibitive and would generate
huge data volumes that might be unworkable or
provide a level of detail that is just unnecessary at
thatstage.Ontheotherhand,if thefirstregional-scale
work is likely to be followed by a more detailed
second phase, of the same geographic extent, it may
then be necessary to acquire VHR data for the entire
area at the start. Unmanned aerial vehicles, carrying
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VHRsensors, and capable ofmaking vast sorties, are
increasinglybeingusedforsuchcountry-widemapp-
ing projects. This is, however, not the normal way of
doing things for the majority of application cases.
Commonly, the regional-scale work is followed by
more detailed studies in selected areas, inwhich case
youwould thenacquirehigher resolution imagery for
those selected areas. The appropriate mapping scale

of data is dictated largely by the spatial resolution and
partly by the swathwidth or footprint of thedataset.A
summary of common remotely sensed datasets
(spaceborne and airborne, and medium to very high
resolution), and themapping scales at which they are
commonly used, is shown in Table 19.1. Table 19.2
presents a summary of the currently available remote
sensing sensors and the corresponding application

Table 19.2 Present remote sensing systems and their application areas

Table 19.1 Remotely sensed datasets and their appropriate mapping scales

Dataset Spatial resolution Swath Mapping scales

Airborne optical <10–50 cm Variable <1 : 30 000
Airborne hyperspectral 2–10m Variable 1 : 10 000
VHR satellite 0.6–5m 11–60 km 1 : 5000–1 : 10 000
SPOT-1–4 10–20m 60 km 1 : 25 000
ALOS AVNIR-2 10m 70 km 1 : 25 000
ASTER 15, 30 and 90m 60 km 1 : 30 000–1 : 50 000þ
Landsat TM/ETM 30m (15m pan) 185 km 1 : 50 000 (1 : 30 000 with pan)þ

VHR satellite¼ IRS Pan, ALOS PRISM, Ikonos, Orbview-3, Quickbird and WorldView.
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areas they are used for. Table 19.3 presents a selec-
tion of current and future remote sensing satellites/
sensors expected in the coming few years.

19.1.1.2 Georectification, image
co-registration and mosaicing

It is essential to ensure that all datasets beingused are
georectified or georeferenced. These days all digital
Earth observation data are provided as georectified
products, which are accurate in x and y to some
specified degree. They are always supplied in one of
a few standard formats, and always conforming to
WGS84 data and UTM projection, since these are
global standards. If, for some reason, the data are not
georectified, then the rectification process will nor-
mally be the first image processing step carried out.
Most image processing and GIS software now pro-
vide a ‘projection-on-the-fly’ facility, which re-
moves the requirement that all data conform to the
same specific coordinate system. Provided that the
coordinate systems of each input dataset are defined
numerically, one dataset can be re-projected auto-
matically to the coordinate system of another dataset
and so brought into alignment, visualized together
and, if necessary, assembled into an image mosaic.

Thegeometricaccuracyof theseEarthobservation
datasets, as they are delivered, is generally adequate
formany applications but quite often a higher degree
of accuracy is needed. This need will depend on
the application in question and on the spatial resolu-
tion of the dataset. For instance, Landsat data can be
considered ‘medium-resolution’ data; it enables
mapping at about 1 : 40 000 (at best) and its geopo-
sitioning is generally accurate to about 50m on the
ground. In contrast, VHR image data (Quickbird,
Ikonos and SPOT-5) may enable mapping at better
than1 : 10 000 scale on thebasis of spatial resolution.
When delivered as raw products these claim a posi-
tional accuracyofabout15m,but tomaprealistically
at such scales, and to do so accurately, the data
require not only improved georectification but
orthorectification to correct for the image distortions
imposed by terrain relief.

In such cases, a user may perform the georecti-
fication based on measured positions (ground
control points or GCPs) acquired using high-quality
GPS. If the data also require orthorectification,
then a DEM of suitable quality is also required.
The quality of the GPS data collection, the users’
capability and how they document their surveys,
rather than the instrument’s capability, are of para-
mount importance.

Resampling of the image data is inevitable during
the georectification process. There is an argument
for leaving the georectification as the final step after
thematic mapping in order to minimize the errors
and distortions introduced by the georectification
process. This approach is typically based on an
image-processing-focused mentality, rather than on
a practical one, and so it rather depends onwhat you
intend to do with the data, as to when the georecti-
fication is done. Today remote sensing application
projects normally involve multi-source datasets,
comprising images acquired by different sensors
and on different dates. The demand for georectifi-
cation to ensure all the datasets conform to a
standard coordinate system thus often overrides any
concern over potential (and subtle) degradation of
image information and so georectification is almost
always considered the first step in the production
of thematic maps from remotely sensed imagery.
In this context, it is far more efficient to georectify
the raw data so that all derivative images are also
georectified.

Table 19.3 Recent and forthcoming launches of
remote sensing satellite sensors

Launch
year

Satellite
sensor Organization

2006 EROS-B ImageSat International
Kompsat-2 Korea Aerospace

Research Institute
2007 TerraSAR-X TerraSAR

WorldView-1 Digital Globe
RADARSAT-2 RadarSat

International, MDA
corporation and
RadarSat2 Info

2008 WorldView-2 Digital Globe
GeoEye-1 GeoEye
GOES-O and
GOES-P

GOES at Boeing

2009 EROS-C ImageSat International
Nigeriasat-2 SSTL
Cryosat ESA

2010 TerraSAR-2 TerraSAR
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Though image co-registration and mosaicing can
be performed between images based on the GCPs of
local matching features, as discussed in Chapter 9,
this process becomes redundant once the images are
all precisely georectified to the samemap projection
system. Georectified images of the same area are in
fact co-registeredwhile adjacent images of different
areas are in a mosaic based on a frame of the map
projection coordinates.

19.1.2 Image processing

We suggest consideration of the image processing
of remotely sensed data in two threads: spectral
information and spatial information, as described
in Table 19.4. As an example, this procedure may
not cover every aspect of image processing nor
every application, but it serves a useful guide to
the essential image processing techniques and of
a workable processing strategy. Alternatively, and
depending on the nature of the application, only part
of procedure shown in Table 19.4 may be required
within a particular project (this is demonstrated in
the teaching case studies in Chapter 20). Again, we
emphasize that a remote sensing application study
should be driven by scientific goals or application
objectives, and not by any particular processing
procedure.

More details of the processing steps given in
Table 19.4 are provided in the following sections.

19.1.2.1 Spectral information
enhancement and extraction

. General enhancement for visual observation:
– Optimal contrast enhancement: Piecewise

linear stretch and BCET are preferred but the
specific choice and configuration of contrast
enhancement techniques should be decided by
observation of the image histograms.

– False colour composition: (consider proper
band selection based on common spectral sig-
natures). As shown in Figure 2.9 in Chapter 2,
for an area with considerable spectral variety,
BCET automatically produces an optimal
composite image with balanced colours.
Piecewise linear stretch enables the generation
of a good colour composite interactively.

– Decorrelation stretch: DDS, IHS or PCA dec-
orrelation stretch. As shown in Chapter 5, a
decorrelation stretch increases the colour sat-
uration without altering the hues, making
ground objects of different spectral signatures
more distinctive for visual interpretation.

. Spectral analysis: Spectral analysis for target
identification is the ultimate goal of hyperspectral
image data processing, while for broadband
multi-spectral images, the purpose of spectral
analysis is to analyse the spectral differences
between targets and thus to produce algorithms
for selective enhancement and effective target
discrimination. In this case, whether or not the

Table 19.4 Sample procedures illustrating the two component threads of image processing, spectral and spatial,
within remote sensing applications

Image Processing for Remote Sensing Applications

Spectral Information Spatial Information

General enhancement for visual
observation

Data fusion to improve spatial resolution

Selective enhancement Filtering: Low pass
Enhancement based on data structure and
physical models

High pass: Gradient
Laplacian

Image classification and segmentation

Spectral analysis
Spatial component extraction – textural
properties, image segmentation and feature
extraction
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image spectral profile of a target matches its true
spectral reflectance signature is not important.
What is important is to maximize the differences
between different targets. BCET is a simple and
effective process for this purpose. As shown in
Figure 19.1, the ETMþ spectral profiles of sev-
eral rock types derived from the original image
are very similar in form, with peaks in bands 3
and 5 and a sharp trough in band 4 because they
are modulated by very high DN averages in
bands 3 (142) and 5 (145) and very low DN
average in band 4 (77). BCET balances each band
to the same DN average (110) and therefore
enhances spectral differences; the spectral pro-
files of the same rock types derived from the same
locations in the BCET dataset of this ETMþ
image are distinctively different.

. Selective enhancement: Based on spectral anal-
ysis (pixel profile or laboratory spectral measure-
ments), selective enhancement algorithms can
be composed to highlight or segment specific
targets, such as vegetation, water, red soil and

clay minerals. Ratio and difference are the sim-
plest selective techniques. The typical approach
to enhance a target is to use the band of the highest
DN (reflection peak) to subtract or divide by the
band of lowest DN (absorption trough). The
differential and ratio indices of vegetation, iron
oxide and clay minerals introduced in Chapter 3
(Section 3.5) are all based on this simple princi-
ple. One may also consider compound difference
and ratio images, using the summation of bands
of two peaks against the summation of two
troughs, in the same way. Indeed, you may create
highly complex algebraic operations, and with
good mathematical logic, but do not get lost in
doing so!

. Enhancement based on data structure
and physical meaning:
– Atmospheric correction: Atmospheric scat-

tering effects add a constant to multi-spectral
images making them look hazy. The spectral
bands of shorter wavelength, for example blue
and green bands, are more severely affected

Figure 19.1 Landsat-7 ETMþ spectral profiles of water, vegetation, red soil, gypsum, mica schist, andesite extracted
before (a) and after (b) BCET stretch
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than those of longer wavelength. Removal of
this constant can significantly improve image
contrast, and thus quality, and also refine the
functionality of ratio technique for topography
suppression. There are many techniques for
atmospheric correction. The simplest, crude
correction is to shift the minimum of an image
histogram to zero by clipping or piecewise
linear stretch as illustrated in Figure 19.2.
The operation is equivalent to the well-known
‘dark pixel subtraction’ technique, proposed
by Chavez (1989), but performed more
efficiently.

– PCA and eigenvector analysis: As fully dis-
cussed in Chapter 7, PCA is based on the
statistical structure of multi-spectral image da-
ta. The analysis of eigenvectors can tell us how
each PC image is composed from the spectral
bands of the original image and thus how a
particular target will be highlighted in a partic-
ular PC. This comprises the so-called ‘FPCS’
technique, one of the most effective techniques
for PCA-based selective enhancement.

– Simulated reflectance: As introduced in
Chapter 3 (Section 3.7), we can derive simu-
lated reflectance and thermal emittance from
a multi-spectral image with both reflective
spectral bands and thermal bands, such as
TM/ETMþ and ASTER, based on a simpli-
fied model of solar radiation to the Earth. This
technique suppresses topography and en-
hances the spectral signature of ground objects

according to their true spectral reflectance.
Thus a simulated reflectance image is directly
comparable with its corresponding spectral
band and is easy to interpret. In contrast, other
techniques, such as ratio and differencing,
enhance targets’ spectral signatures indirectly
in a combination of two or more bands. While
the simulated reflectance technique is for di-
rect enhancement of spectral reflectance of
individual image bands, ratio and differencing
techniques are for selective enhancement of
a particular target on the basis of its spectral
properties among several spectral band
images.

– HRGB: This technique, introduced in Chapter
5 (Section 5.4), is the most effective method
of suppressing topographic shadowing and of
condensing the spectral information from up
to nine spectral bands into a three-band colour
composite. The HRGB image does not facili-
tate easy visual interpretation without refer-
ence to simple colour composites because the
spectral properties of ground objects are indi-
rectly presented. It is, however, very good
for classification, but caution must be taken:
since the hue value is in the 2p range of a
colour wheel, those colour vectors with hues
around 0 and 2p are numerically very different
but are in close proximity in the RGB colour
cube.

. Image classification and segmentation: Multi-
spectral images, as well as multi-source datasets,

Figure 19.2 (a) This ETMþ band 1 image is rather pale and hazy because of the added constant of atmospheric
effects. (b) The atmospheric effects are shown in the solid histogram as the gap between the minimum DN, 35 and 0.
Automatic 99% clipping using a piecewise linear stretch effectively removes the added constant of atmospheric
effects and stretches the image histogram to fill the display range of 0–255, as shown by the line-delineated
histogram. (c) The resultant image shows significantly enhanced contrast with haze completely removed
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may be treated as one multi-variable dataset
and so statistical classification algorithms can be
applied to produce classification maps, automat-
ically or semi-automatically, from them. Many
image features relating to geology and environ-
ment can be easily picked up ‘by eye’ on the basis
of our knowledge-based understanding of spatial
patterns and spectral properties, while many of
the tasks that appear to be easy actually turn out to
be ‘mission impossible’ for classification. There-
fore, image classification cannot replace visual
interpretation and, quite often, a classification
image may still need visual interpretation. For
those ground objects that can be discriminated or
identified purely by their spectral properties,
classification is the most effective way of map-
ping them:
– Thresholding: This simple technique is very

effective for highlighting particular targets.
For instance, a thresholded TM5/TM7 ratio
image can reveal those pixels representing
hydrated alteration minerals that may indicate
the presence of mineral deposits.

– Statistical classification: Reiterating what we
learned in Chapter 8, supervised classification
is based on image training and is often guided
by user knowledge that may be biased or
incorrect. Unsupervised classification, while
sounding like and often appearing like an
automatic technique in many image proces-
sing software packages, is not one. An unsu-
pervised classification image requires inter-
pretation and can be significantly affected by
the choice of initial parameters (most software
packages provide only default values!) even
though the algorithms have self-optimization
functionalities. For both classification ap-
proaches, the statistical decision rules dictate
the classification accuracy.

– Spectral angle classification: The greatest
advantage of this algorithm is that classifica-
tion is independent of any illumination varia-
tion or, in other words, it is not affected by
topographic shading. Though performed on
multi-spectral imagery, i.e. raster data, it is
essentially a vector classifier which treats
each pixel of an N-band image as an
N-dimensional vector in N-dimensional fea-
ture space.

19.1.2.2 Spatial enhancement

. Image fusion: Fusion of a lower spatial resolution
colour composite with a higher spatial resolution
panchromatic image can generate an apparently
higher resolution colour composite that combines
both the high spatial resolution of the panchro-
matic image and the higher spectral resolution of
the colour composite. However, we must realize
that the image fusion, no matter which technique
is used, does not improve the spatial resolution of
spectral information in the original colour com-
posite. The processing is for visual observation
and interpretation but not for quantitative analy-
sis. In Chapter 6, we introduced the following
three fusion techniques:
– SFIM: This is a spectral preservation fusion

technique; it maintains the fidelity of the spec-
tral information from the original colour com-
posite. In other words, it does not introduce
colour distortion. The technique is, however,
very sensitive to image co-registration accura-
cy. Any co-registration errors may produce
subtle edge-blurring effects which degrade the
image sharpness.

– IHS fusion: This is achieved by intensity re-
placement (with a higher spatial resolution
image) in an intensity, hue and saturation
coordinate system. It is insensitive to misreg-
istration and thus produces sharply enhanced
fusion images even if the refined textures
actually mismatch with the spectral edges.
This technique inevitably introduces distortion
of colour and albedo. This distortion will be
severe if the spectral range of the three bands
forming the colour composite is very different
from that of the higher resolution image used
for intensity replacement.

– Brovey transform: This is based on direct
intensity modulation. It has the same merits
and drawbacks as the IHS fusion technique, in
terms of fusion quality, but is more efficient
in processing as it does not require forward and
inverse RGB–IHS transformations.

. Filtering: As a neighbourhood processing tech-
nique, filtering may not ‘honour’ the original
intensity information of an image. Instead, it
brings out the spatial relationships between a
pixel and its neighbours. On the other hand, all
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images acquired through an optical system are, to
a degree, filtered images.
– Low-pass filtering: The main objective of this

is to remove noise at the cost of spatial resolu-
tion, but there are many edge-preserving low-
pass filters that reduce noise with minimal
spatial information loss. For smoothing a clas-
sification image, only those filters without
numerical calculations should be used.

– Gradient filter: As a first-derivative-based fil-
ter, this performs directional enhancement.We
can configure a gradient filter to enhance the
linear features in a particular direction. Impor-
tant advice in this context is that if linear
features in a direction are already very obvious
in the unfiltered image, there is no need to
apply a gradient filter to enhance this direction
at all because it will also enhance subtle
features and thus dilute the already clear
lineaments.

– Laplacian filter: As a second-derivative-
based filter, this is non-directional. It enhances
image textural edges in all direction. A Lapla-
cian filter is often the first step for texture
extraction. One variant of the Laplacian filter
is the ‘sharpen’ filter which is equivalent to
adding a Laplacian filtered image (textures)
to the original image. The result is an edge-
sharpened image. Such processing is for visu-
alization and can aid visual interpretation.

. Spatial component extraction: Based on neigh-
bourhood processing, many spatial components
of a raster dataset may be derived and extracted,
such as local contrast, local variance and edge
intensity. With DEM data, many of the extracted
spatial components have specific physical signif-
icance, for instance slope angles, slope aspects,
slope curvature and flow grids. These properties
relating to surfaces have already been described
in Chapter 16 and will be further discussed in the
next section.

19.1.3 Image interpretation and map
composition

When we interpret images to map particular the-
matic information, either manually or using soft-
ware annotation tools, we are effectively working
on a vector layer. The primary advice here is to start

from the easiest and most obvious and to work
towards the most difficult and complex.

Progressing from images to thematic maps is
where image processing and GIS merge. As a
complete processing cycle, we briefly describe
image interpretation and map composition here as
the final stage of image processing. We will revisit
some contents in this part in greater detail in the
next section. Thematic mapping for various appli-
cation areasmay be different but all follow a generic
route. The list below describes a general procedure
for geological and environmental mapping but it
is generically applicable to the mapping of other
thematic information:

. Map format: Map page setup, geographic coor-
dinates, scale bar, north arrow, title, legend and
other relevant general annotation form a standard
template for image interpretation and map com-
position. These are common and standard tools
in image processing and GIS software suites, and
while they can be applied and modified at any
stage of the work, issues such as map scale may
greatly affect the detail at which the interpretation
can and should be performed, and so should
always be considered at the start. Bear in mind
that it is considered good practice to capture data
at the greatest detail possible, right from start,
since it is far easier to reduce detail than to add or
recapture it later on.

. Basic geographic (cultural) information: Well-
enhanced colour composites can provide more
thanadequate informationfor the interpretationof:
– Human-made features: e.g., cities, towns,

roads, railways and cultivated areas.
– Majordrainage systems: e.g., rivers, coast and

water bodies.
. General interpretation:

– Separation of land and sea: Thresholding
using infrared bands often enables themasking
of sea pixels from an image, thus enabling
more effective enhancement of particular land
objects. Be careful, however, to be very critical
when choosing the threshold and be aware that
dark shadows may cause you problems in this
respect.

– Vegetation: Standard false colour composites
and vegetation indices enable interpretation of
vegetated cover, whether natural or otherwise,
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and so are important sources of land use and/or
land cover information.

– Identifymajor land covercategories: Agricul-
ture, forest and urban areas (industrial and
residential).

. Geological and environmental interpretation:
This stage forms a dynamic process involving
image processing and interpretation. Specific
information can be extracted from images pro-
duced using purposely designed techniques, as
described in Section 19.1.2. From start to finish,
the interpretationbecomesprogressivelyenriched:
– Separate the bedrock (solid geology) from any

superficial deposits (drift geology) – use both
spectral and textual information to do this,
such as simple colour composites or edge-
sharpened colour composites, or colour com-
posites involving fusion of high spatial resolu-
tion. Examine different band combinations
and look for targets which may be spectrally
similar but texturally different, or vice versa.

– Interpret major rock types – again, use colour
composites of differing band combinations,
perhaps with DDS applied to maximize varia-
tions. Use PCA to identify areas which are
spectrally distinctive, and then try to establish
why. Derive simulated reflectance to enable
comparison with laboratory data. Produce
spectrally complex images, such as via HRGB,
to try to distil the spectrally significant
information.

– Highlight specific targets – use differences and
ratios, PCA and FPCS to highlight particular
target materials. Be careful here to remember
that if you have success in highlighting a
particular target which you think may be sig-
nificant, you must also be able to explain why
the particular technique has been successful.
For instance, discrimination of hydrated
minerals and red soils using TM/ETMþ dif-
ference images of bands 5� 7 and 3� 1 must
also be related back to the known spectral
signatures of these materials, in order to
understand how they work.

– Interpret structural features – interpretation of
lineaments, faults, fractures and fold axes can,
in many cases, be achieved without filtering,
so filters should be applied only when such
features are not clear or obvious. In some

cases, faults and folds are revealed not by their
textural characteristics alone, but by the
combination and spatial context of spectral
variations and topographic shading. In fact,
the routine extraction of image ‘lineaments’
should be avoided since these often have no
sub-surface geological basis.

– Use classification – this can be quite effective
for lithological mapping based on spectral
signatures of rocks and minerals, when these
are clearly visible at the surface, such as where
exposure is continuous. Classification ’falls
down’ where there are irregular spatial pat-
terns, such as those caused by intense faulting/
fracturing or where anthropogenic features
(cultivated land patterning) are present. One
could argue that in such cases where rock
exposure is continuous, good ‘old-fashioned’
interpretation of geology is more reliable.
It may prove useful when working with very
large areas and/or where unknown spectral
variations of unknown significance exist,
which might not be in the interpreter’s
knowledge base and so might otherwise be
overlooked. It is our experience that most
experienced geologists prefer to avoid classi-
fication altogether when interpreting images.

Completion of the composition of a thematicmap
in this way may be the final stage of a remote
sensing application project but more often it forms
the beginning of the GIS ‘modelling’ or spatial
analysis part of a project, which may have a much
wider scope,may involve data fromwidely different
sources and may include other remotely sensed
images acquired for very different purposes.
In other words, the image-based geological inter-
pretations we have described here may form a tiny
part of a much larger and broader project remit.

19.2 Remote-sensing-based GIS
projects: from images to
thematic mapping

Projects involving the creation of thematic maps
from remotely sensed imagery commonly follow
a similar path, from the simplest background
information gathering to the more advanced spatial
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modelling. The case studies described here all
follow this path and so, from our experience, we
have summarised the steps involved into the follow-
ing general tasks:

. Important preparatory considerations – the re-
gional context and setting of the area being
studied. An understanding of the wider context
helps to anticipate the variety and types of targets
that will require interpretation. This also in-
cludes the climate of the area. Tropical and
temperate regions will suffer from cloud cover
and data acquisition may be problematic. These
areas are also likely to be densely vegetated and,
while this is not a problem if land use and
agriculture are the applications of interest, it will
limit the depth and detail of any geological
interpretation. Images acquired in tropical areas,
even if cloud free, will suffer from haze in the
visible bands, which will require correction, and
in some cases may render the first three bands
unusable for image processing and interpreta-
tion. Arid and semi-arid areas make interpreta-
tion of ground objects relatively easy since the
spectral signatures of the rocks are less likely to
be obscured by those of vegetation and thick
soils. In some desert environments, wind-blown
deposits may also obscure the bedrock and hin-
der the interpretation of the solid geology
beneath.

. A suggested generic procedure – this will always
follow the same scheme of three broad phases.
The first phase will begin with problem/objective
definition, data acquisition/collection, followed
by data integration, image processing and analy-
sis, then by interpretation and end with map
production and output. This phase should then
be followed by fieldwork to verify the results
(phase 2). Phase 3 should then involve a refine-
ment of the processing and interpretation, in
response to the additional knowledge gained
during fieldwork, to arrive at a more complete
and realistic interpretation map.

. Mapping using thematic layers derived from re-
mote sensing – data integration and visualization.

. GIS ‘modelling’ based onmulti-source data – this
demands the integration of data as described
above. The point of this exercise is to incorporate
different and complementary datasets, in an

attempt to describe or model some potentially
complex phenomenon:
– Multi-source data integration and spatial anal-

ysis – involving other data, such as geological
maps, geophysical data and geochemical data
and DEM, which have themselves been pro-
cessed, interpreted or classified in a particular
way which leads to the identification of some
complex objective, such as a hazard assess-
ment or a site selection exercise.

19.3 An example of thematic
mapping based on optimal
visualization and
interpretation of multi-
spectral satellite imagery

A real remote sensing application project does not
necessary involve all the image processing and GIS
modelling as described in the two previous sections.
It is always important to remember that for an
application project, it should be application driven
rather than processing driven. In this section, we
present a simple example to demonstrate the use of
basic image processing techniques and GIS map
composition functionality to produce a digital geo-
logical interpretation map. Although the theme is
geological mapping, the general approach is appli-
cable for visualization and interpretation of images
for other themes too. This case study has been set up
as coursework for an introductory course in remote
sensing and GIS as part of our undergraduate teach-
ing schedule.

19.3.1 Background information

19.3.1.1 Study area
The study area lies in Almeria Province in south-
east Spain and is illustrated in Figure 19.3. The
environment is characterized by a semi-arid climate
(it is Europe’s only semi-desert), sparse natural
scrub vegetation, localized intense (covered and
irrigated) horticulture, economic extraction of gyp-
sum (and other materials). It is a well-known area
for the teaching of field geology, geomorphology
and geography. Being semi-arid makes the area
ideal for this type of exercise, since there is little
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soil development and almost no vegetative cover to
obscure the geology.

Despite the limited extent of the area, its geology
is varied, which is one of the reasons why it is so
popular for teaching. Superficial deposits consist of
Quaternary palaeo-alluvial fans and red soils, and
Holocene alluvial fans and gravels in ephemeral
river channels. The solid geology consists of
Palaeozoic graphitic and garnet–mica schists, later
Permo-Triassic phyllites and dolomites (in thrust
sheets). These form a series of basement massifs
between which are sedimentary basins which have
been filled by a variety of facies of Messinian
sediments, including reef limestones, marls and
gypsum. To the south-east, these basement–basin
terrains are separated from the Cabo de Gata, a
volcanic terrain of the same age as the basin sedi-
ments but which has been transported to its current
location. This volcanic terrain is typified by acid-
intermediate, island-arc volcanics (andesites and
dacites), some of which have been subject to late-
stage epithermal alteration and mineralization.

The area has quite a long history of gold exploration
and mining operations near the town of Rodalquilar
(now closed).

Tectonically, the area is still active and structur-
ally it is more complex than at first it may appear.
There are major faults, such as the Carboneras fault
(a conservative plate boundary), numerous minor
accommodation structures synthetic and antithetic
to this, in addition to a great many minor neotec-
tonic faults.

19.3.1.2 Data
A Landsat-7 ETMþ sub-scene acquired in June
1999 has been used. The data are georectified tomap
projection UTM (zone 30N) and data WGS84, and
could be said to provide a ‘GIS-ready’mapping base
layer. From this dataset, a series of enhanced colour
composites are produced, as information sources for
the interpretation of geological features. In addition,
a regional geological map, at a scale of 1 : 200 000,
and a shaded relief image derived from SRTM 90m
resolutionDEMdata,arealsoprovidedfor reference.

Figure 19.3 Locationmap of the Almeria region showing the positions and extents of this thematic mapping exercise
(green box, Section 19.3) in addition to the four Spanish case studies described in Section 20.1 Sorbas, Section 20.2
Carboneras, Section 20.3 Nijar and Section 20.4 Andarax (red boxes). Major towns, rivers and coast: fine and bold blue
lines respectively; main roads and motorways: fine and bold brown lines respectively
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Both the latter two datasets provide information
at scales which are much coarser than the images
being used, and this sometimes causes a little initial
confusion on the part of the students. They are only
beginning to learn about mapping scales and ac-
ceptable/workable levels of detail for (i) discrimi-
nation and (ii) feature extraction, and do not at this
stage have the conviction (or experience) to know
that what theywill achieve is amapwhich should be
more detailed, more up to date and positionally
more correct than the published regional map.
Neither do they realize that the reason for perform-
ing this exercise, in reality, may be because geolog-
ical map information does not exist at the required
scales for a particular area, so that mapping from
remotely sensed data sources may be the only way.
Either way, in a real case, you would always collect
as much background information (publications
and maps) as you possibly could, to equip yourself,
but when it comes to processing the images, you
should try very hard not to allow your interpretation
to be biased by that information; a great deal of the
value of a remotely sensed image interpretation lies
in its independence.

19.3.2 Image enhancement for visual
observation

For this project, the objective of the image proces-
sing is quite simple: to produce a few good colour
composites from the givenLandsat-7 ETMþ image
data.

Colour composites of Landsat ETMþ image
bands 321, 432 and 531 (RGB) are recommended
for general purpose visual interpretation of all
ground target types, natural and anthropogenic.
The band 321 RGB true colour composite shows
the land surface, similar to thewaywe see it with the
naked eye and during fieldwork. The 432 RGB
standard false colour composite effectively high-
lights vegetation in red tones but also major ground
objects such as water, soils and gross lithological
variations. In semi-arid terrain, where the level of
exposure is high and soil and vegetation cover are
low, the 531 RGB colour composite is almost
always the best image for discriminating lithologi-
cal variations.

We recommend a simple processing procedure:
contrast enhancement using BCET (or linear

contrast enhancement with appropriate clipping)
to balance the colours followed by DDS to increase
the colour saturation.

The images shown in Figure 19.4 illustrate the
effects of this procedure on the image dataset for
this project. The three colour composites are shown
in columns (a), (b) and (c), with row (1) representing
the raw image composites before contrast enhance-
ment. All three are subject to colour bias to a
certain degree and a lack of contrast. After the
BCET enhancement, the colour bias in each com-
posite is removed by contrast enhancement and
colour enriched, as presented in the second row of
Figure 19.4.

Following this, DDS with the achromatic param-
eter k¼ 0.5 is applied to enhance further the colour
saturation of the three colour composites. These are
shown in the third row of Figure 19.4 and present
vegetation, red soil, water and drainage patterns,
alluvial fans and various rock types vividly in bright
and distinctive colours. These three images are
then used for visual interpretation in the next stage
of the project to generate a digital geological map
using GIS.

19.3.3 Data capture and image interpretation

You should begin by considering the location of the
area being mapped. The most obvious considera-
tions in this case are its regional geological setting
and its climate. The former will help you to antici-
pate the tectonics and lithological characteristics.
In this instance, the area lies in the Betic Cordillera
of south-east Spain, the rocks range in age from
lower Palaeozoic to recent and have undergone two
phases of orogenic deformation (Hercynian and
Alpine) and the region is still tectonically active.
The latter will point to the nature of the terrain
surface, whether it is vegetated, weathered to any
great depth, subject to persistent cloud and so on.
In this case, the area is classified as Europe’s only
semi-desert (with about 300mm rainfall per year),
there is very little soil development, the atmosphere
is hazy from time to time, and there is very little
vegetative cover (what vegetation there is, is related
closely to ephemeral drainage and irrigation). As
a consequence, what is recorded in remotely sensed
imagery represents an almost complete record
of surface geological exposure across the region,
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which makes geological interpretation relatively
straightforward. The arid climate makes vegetation
a very useful indicator of the presence of ground-
water and surface water, and the appearance of
localized patches of healthy vegetation usually
reveals small rural settlements supported by
springs, which are themselves controlled by lithol-
ogy and structure. Even large-scale agriculture may
reveal similar geological control of regional water
supplies since this is alwaysmore cost effective than
piping in water from elsewhere. The aspect of
mountain areas will also affect the distribution of

areas (north-facing slopes) that can support natural
vegetation and woodland; their presence will need
to be considered in interpreting the spectral proper-
ties of ground targets. Understanding land use can
also therefore be an important factor in interpreting
the geology.

Interpretation of different themes in multiple
layers:

. Structure of the map project file – the data will
likely be organized slightly differently from case
to case, because of differences in the specific GIS

Figure 19.4 Landsat-7 ETMþ colour composites of band 321 RGB in column (a), 432 RGB in column (b) and 531 RGB
in column (c); and colour composites of the original bands in row (1); after BCET enhancement in row (2); and with DDS
after the BCET in row (3)
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software used. Essentially, though, it is sensible to
keep solid and drift geological features in separate
layers. At this simple level of data capture, it is
desirable to capture lithological areas as poly-
gons. This makes for a rather more rapidly con-
structed map than the more correct method of
capturing arcs and later building topology to
construct polygons. This choice of strategy rather
depends on the time available to complete the task
and the software tools available to you. Doing this
the ‘quick’, non-topologically correct way means
that there are certain limitations on the comple-
xity of information that is captured and conveyed:
slivers and gaps, and island polygons will have to
be avoided. This method is perfectly acceptable if
the final product is required only as a single map
product for reference and if no further spatial
analysis will be required of the geological
polygons.
Other features such as quarries can alsobe easily

stored as simple polygons. Faults on the other
hand, by their inherent nature, are stored as linear
features in a polyline file. Other cultural data can
also be captured/imported and stored but should
be stored separately from the interpreted features,
but could be grouped together for convenience.
Such features could include towns (points), roads
(polylines) and drainage (polylines). In addition to
the images which are the source data for the
interpreted features, there are other raster images
in the database, namely the SRTM DEM and the
regional geological map. Again these raster data
layers are, by their nature, stored differently and
separately from the vector features, but could
usefully be grouped together as reference layers
or in two groups, for example satellite images and
regional data.

. Use of an interpretation guidance table – during
the practical work, students are advised to use a
table, such as the one given in Table 19.5, to help
familiarize themselves with and note down the
appearance of various ground features, as they
appear in each colour composite (321, 432 and
531) and to use the suggested legend symbols
(or ones of their own making) to annotate their
interpretation. This forms an important step in
understanding the way in which the displayed
spectral bands determine the colour of features
in each image. The connection is made between

relative reflectivity in particular wavebands
(Landsat bands 1, 2, 3, 4 and 5 in this instance)
and image brightness in particular colour bands
(red, green and blue). For instance, iron-oxide-
rich red soils appear bright red in the 321 (RGB)
image but are greenish in both the 432 (RGB) and
531 (RGB) images since the relative reflectance
of iron oxides is high in Landsat band 3 and low
in band 2 and even lower in band 1.
The items listed in the table also provide as a

hint towards the lithologies that the students
should expect to see in this area. In this example,
the students have visited many localities in the
area during the previous year and so are familiar
with its geology and geomorphology; they simply
need reminding of what they saw and learned.
They also need encouragement to make the link
between the appearance of rocks in the field and
a hand specimen, with their appearance in the
image, and to treat the work rather like a compli-
cated puzzle to which there may be no definitive
answer.

. Procedure – we always recommend spending
some time just looking at the images, familiariz-
ing yourself with the database and software and
examining how different targets appear in each
image band combination. During this process,
youwill probably begin conceptually subdividing
the study area into geologically significant zones
(or terrains), before actually capturing any new
data. This will help you to understand which are
the most important features to convey in the final
map. During this stage you should also establish
the optimum scale at which to capture features,
according to the spatial resolution of the images,
probably around 1 : 35 000 in this case, where you
can see maximum surface detail but not individ-
ual pixels.
You should soon begin to feel confident about

identifying boundaries between objects which are
spectrally and texturally different – these will
probably be the most obvious and largest, eye-
catching features. When you are ready to capture
some features, start by capturing those most
obvious lithological outcrops, i.e. their bound-
aries, and when you have created a feature,
remember also to enter an identifying, descriptive
name for the feature, in its attribute table. Doing
this for each feature as you create it will save
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time later (when you may not remember quite
so clearly what you were thinking at the time).
At this stage you will almost certainly not be able
to give the outcrop a specific geological identity,
you may have little idea about the lithology, but
that does notmatter at this stage. Youwill build up
a series of units identified perhaps as
‘sedimentary_1, _2, _3’ or ‘volcanic_1, _2’ and
so on. As you proceed in this way, moving around
the image, you will find outcrops which look
spectrally and perhaps texturally similar to some

that you have already captured, so you should
soon find that you have several polygons with the
same identifying code or label. You can of course
amend these descriptions as you proceed.

After identifying all the obvious features, you
will then begin to find boundaries between litho-
logies which are only subtly different, and perhaps
spectrally complex in themselves. For instance,
they may be spectrally similar but texturally dif-
ferent, in which case you may surmise that they
may represent chemically similar lithologies

Table 19.5 A sample image interpretation guidance table – an aide-memoire
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which are not the same in terms of stratigraphy
or facies. Alternatively, they may be spectrally
different but texturally contiguous, in which case
you could conclude that they represent local var-
iations of lithology which have common
structure, such as suites of metamorphic rocks in
mountain ranges which have been subject to re-
gional deformation. As you progress around the
image, capturing lithological information, many
questions will arise and as you attempt to answer
those questions, calling on your own geological
knowledge and experience, you will get closer to
giving more precise geological names to the out-
crops. After some time, it is advisable to stop and
do something else, returning later with a fresh and
critical eye, to go over what you have done and
refine it. You may repeat this process a number of
times. During these times, it is always a good idea
to zoom back out from your detailed observations,
to a more regional scale, since it is very easy to get
‘bogged down’ in the detail and to spend more
time on one small area than (i) you can afford and
(ii) is necessary for the scale of the map you are
creating.

. Structure – a considerable amount of common
sense and logic is required to be successful and
this comes with experience, confidence and
clear thought. Youwill also, no doubt, find objects
and features which you cannot identify or under-
stand at all and these are the ones that should be

recorded in your notebook as features which re-
quire verification during fieldwork (Figure 19.5).

19.3.4 Map composition

The finished product will include the interpreted
geological information plus sufficient cultural infor-
mation to make the map navigable, and items nor-
mally found on any map, such as a coordinate grid,
scalebar,northarrow,annotation,titleandmaplegend
to explain colours and symbols used on the map.

Care needs to be taken in the selection of colours,
particularly for the interpreted polygons. Bearing in
mind that in the world of digital mapping using
highly functional software a dazzling array of col-
ours and symbols is available, it is important to take
a step back and reconsider the objectives consi-
dered at the start of the exercise (in Section 19.1).
Remember what the application theme and overall
objectives are.What aspect of themap should be the
most obvious one to the eye of the intended end-user
of the map? Consider the map scale for the final
map; remember to ensure this is a sensible number
(preferably a whole number rather than some ob-
scure fraction) and that all the information youwant
to show appears sensibly laid out on the page. Make
sure that the map is not overcrowded with either
cultural information or labels. Will the symbols/
labels be discernible/legible in the final scaled
version? It is often worth making one or more test

Figure 19.5 Work-flow chart, summarizing the processing and interpretation procedures of the mapping project
described in this section
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prints of the map to establish this. Remember to
consider who might be using the map: consider if it
conveys sufficient background/auxiliary informa-
tion to explain sufficiently what the map shows,
how it was produced, what it represents, and so on,
to the untrained eye; assume that a layperson will
need to make use of it and then assess whether they
will actually be able to understand it.

Given that the database contains height data, in
the form of the SRTM DEM, both the images and
the finished map can then be visualized in pseudo
three dimensions.

Theoretically, the finished map should be of
potentially publishable standard. In this class exer-
cise, the results will always fall short of that
standard but will be an impressive achievement for
each student nonetheless, and will look something
like the example shown in Figure 19.6.

When the final map is complete, it is then output
to one of a number of standard formats, such as

.pdf, .tiff or .jpg, or to some other format which
supports zooming and some query functions (such
as ArcPublisher), ready for sending to its final desti-
nation, wherever that may be. Extremely useful,
at this stage, is the ability to output the coordinate
reference information with the publishable map,
using a world file, either a .tfw or .jfw (as described
in Chapter 12), so that it can then be displayed in any
other GIS as a map database product.

19.4 Summary

This is a very important chapter since it sets out a
kind of recipe for themost logical way to approach a
typical project using remotely sensed data, to
achieve an application objective. In this case, we
use basic geological mapping as an example but
the topic could easily be land use, environment,
agriculture or water resources. The important thing

Figure 19.6 An example of the finished interpretation map
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common to all such projects is the strategy.We have
thus tried to provide some valuable and important
rules of thumb, whichwe know from our experience
of doing this type of work. There can surely be no
better way to learn anything than by simply doing it;
what we have done here is to accelerate the learning
process by steering you away from the many,
known, potential pitfalls that lie along the way.
From defining the project goals, through to extract-
ing the elusive thing at the very end, namely the real
image information, this chapter presents a simple
and generic formula for doing so.

Questions

19.1 What other factors govern the choice of image
data used?

19.2 What are the potential uses of the extracted
thematic/vector data?

19.3 How much time is required to achieve these
steps?

19.4 What is/are the most appropriate software
tool(s)?

19.5 How does this phase of work link with the
wider scope of project development?
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20
Thematic Teaching Case Studies
in SE Spain

In this chapter, we discuss several teaching case
studies on specific themes, using image data of SE
Spain, to demonstrate remote sensing applications
in earth and environmental sciences. Each case
emphasizes different parts of the general strategy
(described in the previous chapter) but all follow the
same route from image processing to information
extraction and finally to thematic mapping.

20.1 Thematic information
extraction (1): gypsum
natural outcrop mapping
and quarry change
assessment

The Sorbas area, in Almeria Province of south-
eastern Spain, contains one of the largest and
most significant gypsum deposits in the world. The
large-scale economic extraction and environmental
conservation of the natural gypsum karst landscape
are in direct conflict. In this case study, multi-
temporal TM/ETMþ images are used to map the
distribution of natural gypsum outcrops and to chart
the temporal changes in the extents and location of
gypsum quarrying, to provide objective information
relating to the impact of the extraction industry on

the regional environment. The main objectives
of the study are:

. Identify and map the natural outcrops of gypsum.

. Extract gypsum quarries and investigate the
changes of gypsum quarries over 16 years.

The study comprises three parts:

1. Multi-spectral image enhancement for gypsum
mapping.

2. Gypsum quarry extraction.
3. Multi-temporal comparison for quantitative

assessment of the change of gypsum quarries.

20.1.1 Data Preparation and general
visualization

ThreeTM/ETMþ imageswith eight-year intervals,
acquired in 1984, 1992 and 2000 (Table 20.1), are
used in this study. The Landsat-7 ETMþ image
acquired in 2000 was downloaded from the Global
Land Cover Facility (http://www.glcf.umiacs.umd
.edu/index.shtml), which has been accurately
rectified to UTM N30 based on WGS84 data. The
other two images were co-registered to the ETMþ
image to conform to the same map projection.
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As the three images were acquired by the same type
of sensor system and from similar orbits, although
onboard different satellites, the major deformations
between them are produced by linear translation
and rotation. The simplest linear polynomial trans-
form therefore produces the best co-registration
accuracy.

As explained in Chapter 19 (Section 19.1.2), to
optimize the spectral analysis and visualization,

BCET has been applied to produce BCET datasets
corresponding to each of the three images.

Remote sensing can reduce the workload of
field investigation significantly but cannot replace
it. Field knowledge, of the gypsum outcrops, and
existing geological maps are of great assistance in
sampling to produce image spectral profiles and
to assess the results of this study. Where field
knowledge and existing maps are unavailable, an
understanding of the spectral properties of major
ground objects and target minerals is essential,
while general image visualization is the starting
point for gaining this knowledge. Figure 20.1 is a
colour composite of the ETMþ bands 541 in RGB
with BCET and DDS enhancement. The image
displays vegetation in green and various rock types
in a variety of different colours. The very bright
patches in this image are produced by the gypsum
quarries. Spectral profiles of gypsum can be sam-
pled in these quarries and nearby areas of outcrop.

Table 20.1 The TM/ETMþ images used in this case
study

Satellites Sensors Path/row Acquisition date

Landsat-4 TM 199/034 19 July 1984
Landsat-5 TM 199/034 25 July 1992
Landsat-7 ETMþ 199/034 8 August 2000

Figure 20.1 Landsat-7 ETMþ bands 541 RGB colour composite with BCET and DDS enhancement to show vegetation,
lithology and quarries of the study area. The scale bar in this image serves as a reference to all the images, which cover
exactly the same area, in this case study
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20.1.2 Gypsum enhancement and extraction
based on spectral analysis

As a hydrated mineral, gypsum is spectrally similar
to clay minerals relating to alteration characterized
by high reflectance in TM/ETMþ band 5, a broad
SWIR spectral band centred at 1.65mm, and strong
absorption in TM/ETMþ band 7, a broad SWIR
spectral band centred at 2.2mm. A simple differenc-
ing or ratio of TM/ETMþ bands 5 and 7 can
therefore selectively enhance both targets but
cannot achieve the separation between them
(Figure 20.2). Figure 20.3b shows the ETMþ image
spectral profiles of a known gypsum quarry and
natural outcrop, an epithermal alteration zone and
vegetation. The unique spectral feature of gypsum
thatmakes it different fromclayminerals is that it has
slightly higher reflectance in band4 (nearer infrared)
than in band 5, where alteration clayminerals have a
strong absorption trough.Thus, a simpleBCETDDS
colour composite of TM/ETMþ bands 4, 5 and 7 in
RGB highlights gypsum uniquely in yellow, sepa-
rating it from the alteration clay minerals in cyan as
shown in Figure 20.3a. The spectral sample points
are denoted in this image as well.

The spectral signature of gypsum bears some
similarity to that of vegetation in TM/ETMþ bands
4, 5 and 7 as shown in Figure 20.3, but the so-called
‘red-edge’ feature of strong absorption in the red
band (TM/ETMþ band 3) in contrast to very high

reflectance in the NIR band (TM/ETMþ band 4) is
unique to vegetation. With these observations of
spectral signatures in mind, a simple technique is
designed to extract gypsum with the following
algebraic and logical operations:

If
TM4� TM3

TM4þ TM3
> 0:1 then 0 else

if TM4� TM5 � 0 then TM5� TM7 else 0:

ð20:1Þ

In this formula, the first condition is the NDVI
to eliminate vegetation and the second condition
TM4� TM5� 0 is to exclude clay minerals. Thus
gypsum (both outcrops and quarries) is extracted in
a single imagewith a threshold TM5� TM7� 10 as
shown in Figure 20.4.

The key difference between the gypsum quarries
and natural outcrops of gypsum is the very high
albedo of the smooth quarry floor in visible spectral
range (Figure 20.3b). Thus a slight modification of
formula (20.1) to add the red band in the final
operation will extract the gypsum quarries only:

If
TM4 � TM3

TM4þTM3
>0:1 then 0 else

if TM4�TM5 � 0

then TM5�TM7þTM3 else 0:

ð20:2Þ

Figure 20.2 Difference image of ETMþ band 5 minus band 7. Most white patches are either gypsum quarries or
gypsum outcrops except the one in the bottom-right corner, which is an epithermal alteration zone
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The extracted gypsum quarries in 1984, 1992 and
2000 are presented in Figure 20.5. As shown in each
of the corresponding histograms, a threshold is set
in the bottom of the trough between the main peak
on the left and a small hump on the right that
represent the quarry pixels. The threshold sets the
DNs of quarry pixels to 255 and others to 0.

20.1.3 Gypsum quarry changes during
1984–2000

Wecandisplay thegypsumquarry extraction images
of the years 2000, 1992 and 1984 in red, green
and blue to formulate an RGB colour composite

as shown inFigure 20.6. The colours of the extracted
quarries in this colour composite indicate the
temporal change and development of gypsum
quarrying in the region as interpreted in Table 20.2.

Quarry 1 is the largest in the image. The patch is
mostly white, indicating that the quarry was al-
ready on a great scale in 1984 and in operation
throughout the following years to 2000. The
surrounding yellow belt along the east and north
margin is the quarry expansion during 1984–1992,
while the red belt surrounding the south half of the
quarry indicates the quarry expansion during
1992–2000. The green patches on the north edge
of the quarry are interesting, and denote the areas
quarried during 1984–1992 and then the ground

Figure 20.3 (a) Colour composite of ETMþ bands 457 RGB with BCET and DDS enhancement. Gypsum outcrops and
gypsumquarries are uniquely highlighted in yellow colours while vegetation is in red and reddish orange, and alteration
clay minerals are the same as several rock types in cyan; and (b) ETMþ image spectral signatures of gypsum quarry,
outcrop of gypsum, alteration zone, orange orchard and pine tree forest. The arrows indicate the spectral sample
position in the image

Figure 20.4 Images of gypsum extraction and mapping: (a) 1984; (b) 1992; and (c) 2000
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was probably restored. The small pink patch in the
centre of the white area marks the lowest bottom of
the quarry which can easily become a water pond
after heavy rain as shown in the field photo in

Figure 20.7. The pink colour of this little patch
implies that it was filled with water on the date of
the 1992 image and was dry on the dates of the
1984 and 2000 images.

Figure 20.6 Colour composite of gypsumquarry extraction images of year 2000 in red, 1992 in green and 1984 in blue.
The colour interpretation is detailed in Table 20.2

Figure 20.5 Gypsum quarry extraction images and their corresponding histograms and thresholds: (a) 1984; (b)
1992; and (c) 2000
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Quarry 2 was started before 1984 as indicated by
a small white patch in the east of the quarry.
Significant development occurred after 1992 to the
west as illustrated in red. Quarry 3 was started in the
north part before 1984 as well and then saw consid-
erable expansion during 1984–1992, shown in
yellow and green, and 1992–2000, in red.

Quarry 4 is in a major belt of gypsum natural
outcrops as highlighted in Figure 20.4. Shown in
yellow colour, this second largest quarry in
the image was started after 1984 and quickly
reached the scope recorded in the 1992 image.

The expansion after 1992 till 2000 was limited.
There are some blue, green and cyan patches
nearby, along the gypsum outcrop belt. These
patches are abandoned quarry trials in the years
before 2000. In particular, quarry 5 in blue was
sizeable before 1984 but the quarrying operation
was ended before 1992.

Besides themajor quarries described above, there
are some scattered isolated dots in Figure 20.6,
which are not likely gypsum quarries. These could
be some casual diggings of gypsum as well as
incorrectly extracted pixels.

Table 20.2 Interpretation of colours of Figure 20.6

Colour Interpretation

White Gypsum quarries before 1984 (in 1984, 1992 and 2000 images)
Yellow Gypsum quarries after 1984 (in 1992 and 2000 images)
Red Gypsum quarries after 1992 (only in 2000 image)
Green Gypsum quarries after 1984 and before 2000 (only in 1992 image)
Blue Gypsum quarries before 1992 (only in 1984 image)
Cyan Gypsum quarries before 2000 (in 1984 and 1992 images)
Magenta Gypsum quarries before 1984 and after 1992 (in 1984 and 2000 images)

Figure 20.7 Field photo of the gypsum quarry 1 in Figure 20.6 taken in 2003. The lowest part of the quarry has become
a water pond with vegetation
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20.1.4 Summary of the case study

In this case study, we demonstrated how to design
simple and effective image processing techniques to
map gypsum outcrops and extract gypsum quarries
based on image spectral profile analysis. Though
the image spectral profiles of six TM/ETMþ
reflective multi-spectral bands and a thermal band
are fairly crude in comparison with laboratory
spectral profiles, the diagnostic spectral property
of gypsum can be enhanced to achieve effective
discrimination for accurate extraction of gypsum
outcrops and quarries. Usually, broadband multi-
spectral image data are only adequate for ground
object discrimination but not identification; howev-
er, the identification can be easily achieved through
minimal field investigation guided by these images
of target-oriented enhancement and thematic
extraction. A field investigation indeed forms an
essential part of this type of case study. All the
quarries and natural outcrops extracted in the resul-
tant images of this project had been verified in our
field trips for MSc students of remote sensing.

20.2 Thematic information
extraction (2): spectral
enhancement and mineral
mapping of epithermal gold
alteration, and iron ore
deposits in ferroan dolomite

The Carboneras area lies to the south-east of the
town of Sorbas, on the eastern coast of Almeria
Province, Spain (refer back to Figure 19.3). A
regional NE–SW-oriented tectonic system, known
as the Carboneras fault zone, cuts the area into
complicated jumbled slices of Palaeozoic and Me-
sozoic basement schists, phyllites and dolomites,
together with pockets of Tertiary volcanic rocks.

Intense epithermal alteration has resulted in the
enrichment of economic minerals within a small
gold deposit in the study area. Some exploration has
been carried out but was later abandoned because of
the low grade and limited size of the deposit.
However, the extensive alteration zone serves as
a good test area to demonstrate the application of

multi-spectral remote sensing for mineral explora-
tion. Another mineral of economic interest in this
area, which has been actively mined elsewhere, is
iron ore, found here within Triassic dolomite.
Although closely associated geographically, the
ferroan dolomite deposits were accumulated
through a quite different process from the iron
oxides associatedwith the epithermal gold deposits;
the highly fractured dolomites have become
enriched via weathering and leaching (i.e. they are
gossan-type deposits).

With two distinctively different mineralization
systems within close proximity, we use this case
study to demonstrate the effectiveness of simple
multi-spectral enhancement techniques for mineral
exploration with two objectives:

. Locate argillic–siliceous alteration zone, the
Carboneras gold prospect.

. Locate Triassic ferroan dolomite and iron
minerals (limonite).

Using the 11 band airborne thematic mapper
(ATM) and Terra-1 ASTER 14 band images, the
study comprises three steps:

1. Image dataset preparation.
2. ASTER image processing and analysis for

regional prospecting.
3. ATM image processing and analysis for target

extraction.

20.2.1 Image datasets and data preparation

Two images, namely an ATM image taken in 1991
(NERC UK Airborne Remote Sensing Facility) and
a Terra-1 ASTER image taken in 2002, are used in
this study. The details of the ATM and ASTER
sensors in comparison with Landsat TM/ETMþ
are listed in Table 20.3. It is important to notice that
the three ASTER spectral groups of VNIR, SWIR
and TIR are not only at different spatial resolutions
but also in different radiometric quantization ranges.
The VNIR and SWIR bands are in an 8 bit value
range while the thermal bands are in a 16 bit one.

It is typical of airborne image data that the ATM
image is subject to various localized geometric
distortion caused by the unstable imaging status of
the aircraft. As the first step for data preparation, the
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ATM image was rectified to the ASTER image that
complies with UTM N30 based on ED50 datum.
Thewarping transformationwas a cubic polynomial
fitting derived from 25 GCPs and the bilinear
resampling was applied to produce the rectified
output image from the input image DNs. Because
of the significant irregular distortion of the ATM
image, the RSM of GCPs ranges from 1 to 22 pixels
even though these GCPs were quite carefully
selected. We therefore do not expect an accurate
co-registration between the two images, which can
only be processed and analysed separately for com-
parison. The rectified ATM image is in a curved
irregular shape indicating nonlinear distortion of the
image in the reference map projection.

Figure 20.8 is a merged display of standard false
colour composites of ASTER (bands 321 in RGB)
and ATM (bands 753 in RGB) images. It shows that
the rectified ATM image in the middle matches the
ASTER image fairly well; however, a closer look

reveals considerable discrepancies between the two.
Efforts for integrated processing and image-fusion-
based analysis of the two images will introduce
more errors than benefits. In this case study, we use
the low-spatial-resolution ASTER image for re-
gional prospectivity and the high-spatial-resolution
ATM image to focus on the area of interest for target
mineral extraction.

20.2.2 ASTER image processing and analysis
for regional prospectivity

This case study was chosen because we already
know the area quite well through image study
and previous field investigations. However, if we
presume little knowledge about the area but recog-
nize that itmight havepotentialmineralization based
on the regional geological setting, then the first step
in studying the area would be to conduct regional

Table 20.3 Comparison of spectral bands and spatial resolution of the ASTER and ATM images used in this case
study with the Landsat TM/ETMþ

Sensor
systems

Terra-1 ASTER Landsat-3–7 TM/ETMþ ATM (7.5m)

Spectral
region

Band Spectral
range
(mm)

Spatial
resolution
(m)

Band Spectral
range
(mm)

Spatial
resolution
(m)

Band Spectral
range
(mm)

VNIR 30 1 0.42–0.45
1 0.45–0.53 2 0.45–0.52

1 0.52–0.60 15 2 0.52–0.60 3 0.52–0.60
2 0.63–0.69 3 0.63–0.69 4 0.605–0.625

5 0.63–0.69
6 0.695–0.75

3N 0.78–0.86 4 0.76–0.90 7 0.76–0.90
3B 0.78–0.86 Pan 0.52–0.90 15 8 0.91–1.05

SWIR 4 1.60–1.70 30 5 1.55–1.75 30 9 1.55–1.75
5 2.145–2.185 7 2.08–2.35 10 2.08–2.35
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

TIR 10 8.125–8.475 90 6 10.4–12.5 TM 120 11 8.5–13
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95 ETMþ 60
14 10.95–11.65
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prospecting using a satellite image with adequate
spatial resolution and large coverage. The ASTER
image with three 15m spatial resolution VNIR
bands, six 30m spatial resolution SWIR bands and
five 90m spatial resolution thermal (TIR) bands
serves the purpose well. The particular advantage
of the ASTER image is its very high spectral reso-
lution in the SWIR and TIR bands.

Without knowing the mineral targets, well-
established techniques should be tried first, from
visualization to general spectral enhancement.
Firstly, colour composites of ASTER bands 421 in

RGB with BCET and DDS are generated as shown
in Figure 20.9. These colour composites present
rich information on general lithology and geologi-
cal structure (refer to the geological map in Figure
19.6), as well as rivers, quarries and human-made
structures, but they do not show obvious features
indicating minerals.

As we studied before, simple standard differenc-
ing and ratio techniques can effectively locate
clay and hydrated minerals. ASTER imagery has
six SWIR bands with band 4 equivalent to TM
band 5, and bands 5–9 are high-spectral-resolution

Figure 20.8 Merged display of standard false colour composites of ASTER (bands 321 in RGB) and ATM (bands 753
in RGB) images
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bands within a narrow range of 2.145� 2.43mm
that largely overlap the spectral range of TMband 7.
Most alteration-related clay minerals and hydrated
minerals have a deep absorption trough in the
narrow spectral rang depicted by ASTER band 6.
We thus expect that the ratio or differencing images
between ASTER bands 4 and 6 can highlight
potential targets of such minerals. As shown in
Figure 20.10, both band 4� band 6 and band 4/band
6 highlight an obvious bright belt in the middle of
the image. The two techniques do not show much
difference in the results. Spectral profiles of select-
ed bright pixels in several patches from the original
image data appear to have similar shapes to the
diagnostic absorption features in VNIR and SWIR

bands 1–9, implying the same type of alteration or
hydrated minerals (Figure 20.10c). However, the
spectral profiles of the same points from the BCET
data of bands 1–14 (the thermal bandswere rescaled
to the 8 bit value range) in Figure 20.10d are clearly
in three distinctive groups:

. Argillic alteration: High reflectance in band 4,
strong absorption in both band 6 and band 3, and
low emission in thermal bands 10–14.

. Siliceous alteration: Similar spectral signature to
the argillic alteration in VNIR and SWIR bands
but the high emission in thermal bands 10–14 is
diagnostic for underpinning quartz and silica-rich
minerals.

Figure 20.10 (a) ASTER band 4� band 6 differencing image; (b) ASTER band 4/band 6 ratio image; (c) spectral
profiles of original ASTER bands 1–9 (VNIR and SWIR); and (d) spectral profiles of the BCET stretched ASTER bands 1–14
(VNIR, SWIR and TIR)

Figure 20.9 ASTER bands 421 RGB colour composites: (a) BCET; and (b) DDS
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. Gypsum: Similar to the above two groups in
SWIR bands, but there is a reflectance peak rather
than absorption trough in NIR band 3. Recall the
last case study, in which this spectral profile is
similar to the ETMþ spectral profile of gypsum
illustrated in Figure 20.3.

Based on the above spectral signatures, the
following compound differencing colour composite
can enhance the three different minerals in
distinctive colours:

. Red: band 4� band 6. Generally highlights
all the alteration clay minerals and hydrated
minerals, Figure 20.11a.

. Green: 2� band 4� band 6� band 3. Because of
the high reflectance of gypsum and strong absorp-
tion of alteration clay minerals in band 3, this
difference eliminates gypsum while further en-
hancing alteration clay minerals, Figure 20.11b.

. Blue: band 4� band 6 þ band 11� band 3. The
difference between band 11 and band 3 eliminates
argillic alteration for its low thermal emission
in band 11 and suppresses gypsum for its
high reflectance in band 3, leaving silica to
be further enhanced as the brightest pixels,
Figure 20.11c.

Therefore, in this compound difference colour
composite (Figure 20.11d), gypsum is bright
orange to reddish because it is only bright in the
red layer; argillic alteration is bright yellowish
as it is bright in both red and green layers; and
quartz siliceous alteration is white as it is bright in
all the RGB layers. There are many noise-like
blocky edge effects in this image as the result of
different spatial resolutions of the VNIR, SWIR
and TIR band groups. This artefact can be effec-
tively suppressed by a 3� 3 smoothing filter
(Figure 20.11e).

Figure 20.11 Generation of compound differencing colour composite: (a) band 4� band 6 generally highlights clay
and hydrated minerals; (b) 2� band4� band 6� band 3 eliminates gypsum and highlights clay minerals of the
alteration zone only; (c) band 4� band 6 þ band 11� band 3 highlights quartz; (d) compound colour composite of
(a) in red, (b) in green and (c) in blue; and (e) compound colour composite smoothed with a 3� 3 smoothing filter
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Regional prospecting using the ASTER image
successfully located an alteration zone and separa-
ted two different types of alterations. However, for
more detailed study of these detected small altera-
tion targets, the relatively low spatial resolution of
the ASTER image is obviously not adequate. Thus
an airborne remote sensing study at high spatial
resolution focusing on this alteration zone is
required.

20.2.3 ATM image processing and analysis
for target extraction

The ATM is an airborne version of the Landsat
TM/ETMþ across-track scanner but it has finer
spectral resolution with a total of 11 spectral bands
(10 reflective spectral bands in the VNIR and SWIR
spectral regions and 1 broad thermal band) as listed
in Table 20.3. The spatial resolution of the ATM is
dictated by the flight altitude, which is 7.5m for this
dataset.

With the regional prospecting results using the
ASTER image, the obvious starting point of the
detailed study using the ATM image is to repeat the
technique used to produce a higher resolution
version of the equivalent results generated from the
ASTER image. One of the advantages of the ATM
image is that its thermal band has the same spatial

resolution as the reflective spectral bands and
therefore it is possible to generate high-quality
colour composites of simulated reflectance as
introduced in Section 3.7.

We start from simple colour composites
and simulated reflectance colour composites.
Figure 20.12 shows colour composites of (a) ATM
bands 10–5–2 in RGB with DDS enhancement and
(b) simulated reflectance of the same bands. This
band combination is equivalent to TM bands 731
in RGB displaying the clay mineral absorption
SWIR band in red, the red band in green and the
blue band in blue. The DDS and the simulated
reflectance colour composite are spectrally similar
but the topographic shadows in the simulated
reflectance colour composite are subdued with
spectral variation further enhanced. Comparing
these images with theASTER compound difference
colour composite in Figure 20.11, the cyan patches
on the left of the image are gypsum outcrops and the
brown-coloured patch left of the river junction
where two channelsmerge into one is the epithermal
alteration zone. The much higher spatial resolution
of the ATM data indeed brings out many details
of these mineral targets. Among others, the most
eye-catching features in these two images are the
red patches in the top half of the images. These are
iron ore deposits in ferroan dolomites. Showing in
red, these iron deposits are characterized by high

Figure 20.12 ATM bands 10–5–2 colour composites: (a) DDS enhanced; and (b) simulated reflectance
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reflectance in ATM band 10 where both alteration
clay minerals and gypsum have strong absorption,
and therefore are not depicted by the ASTER
compound differencing colour composite in
Figure 20.11.

The simulated reflectance colour composite of
ATM bands 972 in RGB (Figure 20.13a) displays
similar phenomena as the RGB composites of bands
10–5–2 except for vegetation in distinctive bright
green, but the iron deposits are less red and the
epithermal alteration zone is more reddish, making
the two less distinguishable. The spectral profiles
extracted fromtheBCET-processedATMimagedata
(Figure20.13b) indicate that the ferroandolomitehas
high reflectance in both ATM bands 9 and 10 but the
reflection peak is at band 10, which is a diagnostic
feature distinguishing ferroan dolomite from all
the other mineral targets in the study area. The
ATM spectral profiles of argillic alteration, siliceous
alteration and gypsum are similar to those obtained
fromtheASTERimage shown inFigure20.10d.Asa
trial, the compound difference colour composite
using an ATM band combination equivalent to the
ASTER compound differencing colour composite in
Figure 20.11d was produced as follows:

. Red: ATM9�ATM10 highlights both the argillic
alteration and gypsum.

. Green: 2�ATM9�ATM10�ATM8 highlights
argillic alteration only.

. Blue: ATM9�ATM10 þ ATM11�ATM7 high-
lights siliceous alteration.

Following this same principle, the image in
Figure 20.14 presents argillic alteration in bright
yellow to green, gypsum in bright orange red and
siliceousalteration inwhite.However, theATMband
10 is a rather broad SWIR band in comparison with
theASTER band 6which targets the deepest absorp-
tion ofmost clay and hydratedminerals. The same is
true for the thermal band, which depicts the diagnos-
tic thermal emission feature of quartz, whereas the
ATM compound difference colour composite does
not enhance these minerals as distinctively as the
ASTER one. Unsurprisingly, the image does not
enhance the irondeposits in ferroan dolomites either,
since it is not designed for the purpose.

As mentioned before, the key spectral feature
making the iron ore deposits in ferroan dolomites
different from the argillic alteration zone and
gypsum is the higher reflectance in ATM band 10
than in band 9, but this feature is shared by many
other rock types and is thus not diagnostic.Wewould
like to produce a colour composite that enhances
ferroan dolomite, the argillic alteration zone and
gypsum only. Since this is not easily achieved using

Figure 20.13 (a) Colour composites of simulated reflectance of ATM bands 972 in RGB; and (b) spectral profiles of
gypsum, siliceous alteration, argillic alteration and ferroan dolomite derived from BCET stretched ATM image data
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arithmetic operations, we consider a combined
approach using both differencing and the feature-
oriented PC selection method (FPCS, see Section
7.2). PCAwas applied to bands 2 to 10; band 1 of this

ATM dataset is very noisy and was therefore dis-
carded and band 11, the thermal band, was also
discarded as it is not relevant for the target features.
Table 20.4 presents the matrix of eigenvectors of
the covariance matrix of the nine bands. PC5 is
dominated by the difference of ATM band 10 and
band 9 depicting the key spectral feature of ferroan
dolomites. The difference between band 7 and band
5 enhances vegetation as well in PC5. As shown in
Figure 20.15a, ferroan dolomites are bright while
both argillic alteration and gypsum are very dark in
thePC5 image. PC3 is largely aweighted summation
of all the VNIR bands subtracting the summation of
SWIR bands 9 and 10. As implied in the ATM
spectral profiles in Figure 20.13b, the operations
for PC3 will produce high values for gypsum and
very low values for argillic alteration zones and
the ferroan dolomites, and thus the negative PC3
highlights argillic alteration zones and ferroan
dolomites while suppressing gypsum as shown in
Figure 20.15b. Again we use the difference image of
2�ATM9�ATM10�ATM8 to highlight argillic
alteration only, as shown in Figure 20.15c. Finally
a colour composite is generated as below:

. Red: PC5 highlights ferroan dolomites and
suppresses argillic alteration and gypsum.

. Green: Negative PC3 highlights both ferroan
dolomites and argillic alteration and suppresses
gypsum.

. Blue: 2�ATM9�ATM10�ATM8 highlights
argillic alteration only.

Table 20.4 Eigenvectors of the covariance matrix of 9 ATM image bands.

Covariance PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
Eigenvectors

Band 2 0.320 0.395 0.292 �0.679 0.196 �0.046 0.354 �0.160 0.065
Band 3 0.348 0.325 0.187 �0.046 �0.019 0.054 �0.631 0.450 �0.363
Band 4 0.343 0.286 0.091 0.320 �0.215 �0.162 �0.184 �0.117 0.755
Band 5 0.339 0.199 0.071 0.430 �0.297 �0.192 0.298 �0.395 �0.535
Band 6 0.347 �0.208 0.234 0.262 0.039 0.481 0.476 0.495 0.089
Band 7 0.331 �0.490 0.248 �0.038 0.223 0.342 �0.353 �0.544 �0.012
Band 8 0.312 �0.558 0.078 �0.154 �0.064 �0.704 0.035 0.247 0.002
Band 9 0.329 �0.101 �0.628 �0.347 �0.539 0.276 �0.008 �0.013 0.013
Band 10 0.329 0.111 �0.592 0.188 0.693 �0.106 0.036 0.013 �0.014

Figure 20.14 The compound difference colour compo-
site of ATM9� ATM10 in red, 2� ATM9� ATM10� ATM8
in green and band 4� band 6 þ band 11� band 3 in blue
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The resulting colour composite in Figure 20.15d
shows ferroan dolomites in yellow because they
are bright in both red and green layers, and argillic
alteration in cyan because of its high values in
green and blue layers. It is interesting to notice

that the image depicts gypsum in very distinctive
deep blue, while none of the three images forming
this colour composite highlights gypsum. As
shown in Figure 20.15, gypsum is suppressed as
very dark features (this is distinctive as well!)

Figure 20.15 (a) PC5 image of ATM bands 2–10; (b) negative PC3 image of ATM bands 2–10; (c) compound difference
image of 2� ATM9� ATM10� ATM8; (d) colour composite of (a), (b) and (c) in RGB; and (e) interpretation of the three
major mineralization targets in the area: argillic–siliceous alteration zone, ferroan dolomite and gypsum
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in both PC5 and negative PC3, while in the com-
pound difference image it is in medium grey.
Consequently, gypsum is clearly enhanced as
deep blue in the resulting colour composite
(Figure 20.15d). This reminds us that feature en-
hancement can be achieved by suppression as well,
instead of by highlighting!

Finally, as shown in Figure 20.15e, a simple
interpretation map of the argillic alteration zone,
iron ore deposits in ferroan dolomites and gypsum
outcrops was produced from the PC and compound
difference colour composite image.

20.2.4 Summary

In this case study, we used ASTER and ATM
images to demonstrate the application of multi-
spectral and multi-resolution remote sensing for
mineral exploration via image processing. Firstly,
the ASTER image with lower spatial resolution
but large coverage was processed and analysed for
regional prospecting. This enabled us to focus on
a much smaller area with several different types
of minerals, using a higher spatial resolution ATM
image for detailed study. For both datasets, image
processing began from optimal visualization of
the data followed by well-established standard
enhancement techniques for the presumed targets.
Then image spectral profiles of pixels represent-
ing possible mineral targets located by standard
techniques were carefully analysed to design
further processing strategy and specific enhance-
ment operations addressing the diagnostic spec-
tral features of the target minerals. Using
compound difference images and the FPCS
PCA method, regional distributions of argillic–
siliceous alteration and gypsum are highlighted in
an ASTER compound difference colour compo-
site image, while the details of argillic–siliceous
alteration, iron deposits in ferroan dolomites and
gypsum are mapped by a colour composite of PC
and compound difference of an ATM image. One
interesting lesson to learn from this ATM colour
composite in its enhancement of gypsum is that
enhancement does not always mean highligh-
ting the target in bright pixels: suppressing the
target features as very dark pixels is enhancement
as well!

20.3 Remote sensing and GIS:
evaluating vegetation and
land-use change in the Nijar
Basin, SE Spain

20.3.1 Introduction

This case involves the use of multi-temporal
satellite image datasets acquired during the period
between 1984 and 2004, to demonstrate the nature,
distribution and rate of change to land-use patterns
in the Nijar Basin, in the Almeria Province of south-
east Spain. It is a fairly simple case which demands
accurate data co-registration (georeferencing) and
the processing of multi-spectral imagery to reveal
features characteristic of land use in this area, in
order to identify where and how much change has
occurred. GIS here serves tomanage and display the
processed results and to enable some spatial statis-
tical analysis.

ThesustainableeconomyofAlmeriaProvincehas
for some considerable time been based on agricul-
ture, and this is still the case today. Throughout the
1980s the styleofagriculturechanged radically from
one of open growth of grapes, olives, nuts and other
vegetables to the highly intensive production of
tomatoes, melons, cucumbers, strawberries and
other soft fruits and vegetables, under plastic in
greenhouses. Flat ground, plentiful sunshine andEU
subsidies have together enabled the rapid develop-
mentof this style ofagriculture.Theplastic covering
prevents excessive evaporation of water, helps keep
pestsout andpromotesayear-roundgrowingseason.
This growth has been accompanied by a huge in-
crease in demand for water, which has traditionally
been supplied by an aquifer located in theMessinian
sediments below. Unregulated pumping on an
unprecedented scale eventually caused a depression
in the local groundwater table and the incursion of
salinewater fromtheMediterraneanSea to thesouth.
These events havebeen the subject of someattention
and many publications exist. Irrigation styles have
now changed to drip-feed methods which use water
much more effectively.

An air flight to Almeria these days greets the
tourist with a view of the ‘sea of plastic’ which now
covers the much of the open, flat ground around
Almeria. As the aircraft comes into land, it is a
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shocking and spectacular sight. The construction of
such plastic greenhouses is today avery hot political
topic since the benefit to the economy is undeniable
yet most agree that they are a ‘blot on the
landscape’.

The location of theNijar Basin with respect to the
other previously described teaching case study
areas is shown in Figure 19.1. We have already
described the climatic setting of this area, in Section
19.3.3, as being semi-arid (semi-desert). The
200–300mm incident rainfall predominantly falls
on the Sierras, in the months between October and
April, and of that rainfall perhaps 40–50% is lost
through evaporation and 10–20% lost as runoff so
that perhaps 30% infiltrates and becomes ground-
water and ultimately enters the aquifer.

The Nijar Basin lies between the Sierra de
Alhamilla and a range of lowhills, calledLaSerrata,
which represents the topographic expression of the
Carboneras fault. The latter forms a structural trap
into which terrestrial sediments have been deposit-
ed. The resulting sequence of marls, gypsum, lime-
stones and sandstones deposited in the basin now

forms the main aquifer supplying water for agricul-
ture in the Nijar area. The geological setting is
illustrated by the interpretation map shown in
Figure 19.7 and the local geography is shown in
Figure 20.16.

The objectives of this study are broadly to
demonstrate the use of multi-temporal imagery in
revealing land-use change in the Nijar Basin. In
doing so, we hope to comment on the rate and nature
of the changes, and to illustrate these graphically
and quantitatively.

More specifically, the objectives are to:

. Highlight the distribution of both vegetation
(natural and agricultural) and plasticulture (see
Figure 20.17) for each year represented in our
database.

. Locate and quantify areas of changing land cover.

20.3.2 Data preparation

In any study of temporal change, a set of image data
acquired over a time period is required. In this

Figure 20.16 Map of the Nijar Basin area with SRTM shaded relief as background topography. The field of view and
scale bar here relate to all the images shown in this case
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particular case, the area in question has undergone
quite a radical change over a period of 20 years and
so the database consists of subsets of four Landsat
scenes, acquired in 1984, 1989, 1992 and 2000, and
digital aerial photographs acquired in 2004, as
summarized in Table 20.5.

Generally speaking, these days all Earth obser-
vation (EO) datasets are delivered as georefer-
enced products. In the 1980s and early 1990s,
however, this was not the case, so the first step
here is to georeference, or at least co-register, the
older image datasets used, and to ensure that this is
done as accurately as possible. The Landsat-7
ETMþ dataset already conforms to WGS84 and
UTM (zone 30), so the most logical step is to
co-register the raw Landsat-5 images to the Land-
sat-7 ETMþ scene. As explained earlier, given
that all the imageswere acquired by similar sensors
and have similar geometry, this co-registration is
best achieved using a simple linear translation and
rotation. As explained in 19.1.2, BECT has been
applied to all datasets.

20.3.3 Highlighting vegetation

Herewe begin with standard false colour composite
images, of bands 432RGB, forgeneral visualization
of land cover types (vegetated and non-vegetated)
for each of the years of observation. For all four
years, these are shown in Figure 20.18.

We can see clearly from the extent and formof the
dense patch of red in 1984 that the vast majority of
land under agriculture was not devoted to plasti-
culture but was under open skies (Figure 20.18a).
We can also see that plasticulture made its first
impact in 1989 and expanded steadily to 2000.

Now that we have identified the vegetated and
plasticulture areas we need to establish both the
decrease in open agriculture and the expansion of
plasticulture (since they do not necessarily mirror
one another). Firstly, we need to identify and extract
the open vegetation so we will use a simple normal-
ized difference vegetation index or NDVI. The
resultant NDVI images for each year are shown in
Figure 20.19. These allow us to visualize the extent

Figure 20.17 (a) View looking south-eastwards, from the lush, spring-fed vegetation of the upland village of Huebro,
over the greenhouses of the Nijar Basin in the middle distance; and (b) one of the older plastic-covered greenhouses
constructed from wooden posts and covered with plastic-coated fabric mesh

Table 20.5 Multi-temporal datasets used in the case study

Dataset Scene identifying numbers Acquisition date(s)

Landsat-5 TM Subset of path 199/row 034 1984, 1989, 1992
Landsat-7 ETMþ Subset of path 199/row 034 2000
Aerial photography Ortho-quads (Junta de Andalucia air survey) 2004
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and decline of open vegetation from 1984 when
almost no plasticulture existed (Figure 20.19a),
which we take as the baseline for our estimations,
to 2000 when very little open agriculture remained.
In 2000, the few patches of healthy vegetation
represent gardens and trees growing around the
town of Nijar, which is supplied with plentiful
spring water, and a few isolated fields and old
greenhouses which are in disrepair. One large patch
of open agriculture is noticeable (centre right) in the
NDVI of every year; this represents a farm whose
owner stubbornly refuses to adopt plasticulture.
Sadly, this plot is now in a state of disrepair.

Surrounding the central patch of cultivation in each
image, the background appears as a mid-grey tone;
this represents the natural scrub vegetation charac-
teristic of this semi-arid part of Spain and has a
fairly similar appearance in every year.

The 1992 image (Figure 20.19c) contains a linear
feature running from the bottom left to top right,
which has anomalously low NDVI values. This
represents the main Malaga–Murcia motorway,
which was constructed around 1991–1992. The
motorway as shown in 2000 is represented by a
much narrower dark line than in 1992. This is
probably a result of the re-establishment of natural

Figure 20.18 Standard false colour composite images (432 RGB) illustrating clearly the extent of open vegetation
(in red tones) and plastic greenhouses (inwhite andbright cyan tones) as observed in: (a) 1984; (b) 1989; (c) 1992; and
(d) 2000. Rocks and soils, exposed beyond the cultivated and urban areas, appear in a variety of grey, bluish green,
brown and greenish tones
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vegetation on the verges of the motorway, as oppo-
sed to the broad swath of groundwhichwas stripped
of vegetation during construction in 1992. Con-
versely, the area around Nijar town is relatively
bright in each year, since the vegetation here is
found in parks and gardens inside and around the
town.

20.3.4 Highlighting plastic greenhouses

To highlight and extract the plastic-covered
greenhouses we must first understand their spectral
properties. The roofs are what we see in these
images and, on occasion, we may see something

of the vegetation growing within. These roofs
are generally highly reflective and often cause
saturation in the visible bands. The roofs are
sometimes painted dark (black or grey) in winter
to make them less reflective and thus absorb more
radiation. In some cases where the plastic sheeting
is relatively new and/or less opaque than older
greenhouses, or where the sheeting has not yet been
painted, chlorophyll in the growing vegetation
inside makes a contribution to the overall reflec-
tance of the greenhouse and it appears pale pink
in the standard false colour images shown in
Figure 20.18. In other cases, the plastic roofs appear
less reflective because they are curved rather than
flat (generally the more modern constructions).

Figure 20.19 NDVI as calculated from each image dataset: (a) 1984; (b) 1989; (c) 1992; and (d) 2000

300 PART THREE REMOTE SENSING APPLICATIONS



The plastic itself, though, does not appear to
have any particularly diagnostic spectral features
and so its signature resembles that of other highly
reflective targets, such as bare, flat, cleared fields
or the smooth level floor of a nearby gypsum
quarry. Clearly, the plastic-covered targets in the
images cannot simply be extracted on the basis
of visible brightness alone. As with any other
target, we need to look carefully at the spectral
signatures to discover some diagnostic features
and thus a way to separate them from the other
image features. Using one of the images in the
database for illustrative purposes (Landsat ETMþ
2000 in this case), the spectral profiles of
some of the main ground targets are shown in
Figure 20.20.

With these observations of spectral profiles in
mind, a simple formula is designed to extract pixels

representing plastic-covered greenhouses using the
following algebraic and logical operations:

If ððb4� b3Þ=ðb4þ b3ÞÞ < 0 and ðb5=b7Þ < 1:1
then ðif ððb1þ b2þ b3Þ=3Þ>225
then 1 else 0Þ else 0: ð20:3Þ

Referring also to the profiles in Figure 20.20, the
first part ((b4� b3)/(b4 þ b3)) < 0) effectively
removes any surface which is vegetated (cultivated
or natural), the second part ((b5/b7) < 1.1) enhances
and thresholds hydrated minerals (including
gypsum), and the last part (((b1 þ b2 þ b3)/
3) > 225) masks on the basis of average visible
brightness. All excluded pixels are then coded as
0 and all retained pixels codedwith a value of 1, thus
producing the binary images shown in Figure 20.21.

Figure 20.20 (a) True colour composite (321, 2000) of the Nijar Basin area; (b) detail of the image in (a); and (c)
Landsat ETMþ spectral profiles of some of the main ground targets for discrimination
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The differing illumination conditions on each
acquisition date mean that the thresholds in (20.3)
need to be adjusted to compensate for slight changes
in relative brightness in each image. Even after such
minor adjustments, we find that in Figure 20.21c we
have gained some pixels from the road leading to a
small gypsum quarry and have partially lost one
large, almost triangular-shaped greenhouse from
the upper centre of the area. Our algorithm excluded
the latter because its roof had been painted sometime
before 2000 and ismuchdarker in 2000 than itwas in
either 1989 or 1992.

Our dataset also contains ortho-rectified digital
aerial photographs (as a three-band true colour
image only, i.e. without near infrared) acquired in
2004. These images have 1m spatial resolution and
have been mosaiced to produce the image shown in

Figure 20.22a. They provide high spatial detail for
the interpretation of ground features, including
plastic-covered greenhouses. If we perform a simi-
lar procedure to classify the greenhouses from this
image, though this time on the basis of relative
visible brightness since we have no infrared bands,
we produce the binary image in Figure 20.22b.Once
againwe have picked up the few pixels that make up
the small gypsum quarry, but we will ignore these.

20.3.5 Identifying change between different
dates of observation

Since the images are now accurately co-registered,
we can used image subtraction to identify areas of
change from one image to another. We may also

Figure 20.21 Binary images with pixels encoded to show the extent of plasticulture for the years 1989, 1992 and
2000 (we have assumed that there were no greenhouses in 1984)

Figure 20.22 (a) Ortho-photo true colour mosaic (2004) of the study area; and (b) the binary plasticulture image
derived from it
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display different dates in different colour guns.
Firstly, we need to consider exactly what we need
to compare in this way, so we should remember two
of the primary objectives: highlight areas of vege-
tative cover and highlight plastic greenhouses.With
these in mind, we can use the NDVI as one measure
from which to identify change and the thresholded
plasticulture image produced in Figure 20.23 as the
other. We can then compare these indices for each
year to estimate the proportion of land devoted to
open cultivation.

The difference images in Figure 20.23 indicate
that the greatest reduction in the extent of open
vegetation occurred between 1984 and 1989. The
white line that appears in Figure 20.23b represents
the loss of vegetation caused by motorway con-
struction in 1991–1992; the same motorway path in
Figure 20.23c shows the opposite change in this
time period and so appears black, representing
the re-establishment of vegetation adjacent to the
motorway. The difference image Figure 20.23c also
shows a bright patch around the town of Nijar,
representing a decrease in open vegetation between
1992 and 2000; the reasons for this are unclear and
would require field investigation to explain.

Thresholding of the NDVI selectively to retain
the highest values representing healthy cultivated
vegetation, reclassifying them to a value of 1, and
excluding the remaining values representing natural
scrub vegetation and unvegetated areas (classified
to a value of 0), allows us to produce a binary image
representing open cultivation. If we perform this
classification for each year, we may calculate the
proportion of the area devoted to open cultivation
and therefore gain an indication of the reduction
over the time period, using any GIS statistical
package. Table 20.6 shows the results of such
calculations; we find that land devoted to open
cultivation has decreased from a maximum of 8%
in 1984 to a minimum of less than 1% in 2000.

Using the thresholded binary images shown in
Figure 20.21 in which we have classified plasticul-
ture with a value of 1 against all other pixels with a
value of 0, we can again calculate the areas and
proportions, this time of land occupied by plasti-
culture. This reveals that from our baseline in 1984,
when we observe only open cultivation, plasticul-
ture has commenced and increased to the point
where it occupies more than 10% of the total study
area, as summarized in Table 20.7. In other areas,

Figure 20.23 Difference intervals between NDVI images: (a) 1984–1989; (b) 1989–1992; and (c) 1992–2000.
High values (bright pixels) indicate a loss of vegetation in the time period

Table 20.6 Statistics of change: land devoted to open cultivation

Year 1984 1989 1992 2000

Open cultivation (km2) 11.7 3.2 3.5 1.3
Non-cultivated or plasticulture (km2) 155 164 164 166
Proportion of the area 8% 2% 2% <1%
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such as south-west of Almeria city, this percentage
is far higher. Making the same calculation of area
from this binary image, we find that the proportion
of land devoted to plasticulture has increased again
to just over 13%. These figures seem rather low in
visual comparison with the images but they do not
account for the averaging that the human eye/brain
tends to perform, which ignores the areas in be-
tween the greenhouses; some adjustment would be
required to account for this to gain a more repre-
sentative idea of land devoted to plasticulture.

20.3.6 Summary

This case study has allowed us to make an estimate
of the extent of vegetation and plasticulture in this
one small area, as being representative of change
which is mirrored in other parts of the region.
We have explained one method for doing so and
some of the difficulties along theway. Clearly some
assumptions and inaccuracies must be accepted,
such as those introduced by the subjective applica-
tion of thresholds to produce binary classifications,
and these must always be recognized and acknowl-
edged even if they cannot be eradicated.

Comparison of the extent of plasticulture in 2004
with that of open vegetation in 1984 reveals that
plasticulture has more than merely replaced tradi-
tional agriculture, since it has expanded far beyond,
even to some areas that might not at first seem
suitable, such as the top of the La Serrata ridge.

It is tempting to try to classify the greenhouses
themselves and thereby the type of vegetation
growing inside them but this has, time and again,
proved to be a waste of effort, for a variety of
reasons. In many cases, there is indeed a contribu-
tion from the photosynthesizing plants to the overall
reflectance of the greenhouse roof material but the
amount of contribution is dependent on many

things, not least the age and type of material making
up the roofs of the greenhouses. None of the roofs
are of clear plastic or glass, some have been made
more or less opaque though painting, some aremade
of mesh, and some have several layers of plastic or
mesh, added over the years. Since greenhouses are
costly to maintain, the only safe conclusion is that
those with intact roofs are generally filled by some
growing cash crop.

The availability of, and impact on, water
resources in this region are further avenues for
investigation but one in which remote sensing can
contribute only to a limited degree since they
occur underground. What we can surmise is that
in this period (1984 to 2000) the changing style,
extent and intensity of cultivation will have meant
that the demand for water increased enormously.
Unregulated pumping in the past from wells in
this area has caused depletion of the local aquifer,
which is known to have resulted in the incursion
of saline water from the Mediterranean to the
south, thus contaminating the aquifer and increas-
ing salinity in soils. New irrigation techniques and
regulation of water extraction have lessened these
effects but water and soil quality remain impor-
tant issues in this area and require constant
monitoring.

20.4 Applied remote sensing and
GIS: a combined
interpretive tool for
regional tectonics, drainage
and water resources

20.4.1 Introduction

This study involves the use of multi-spectral
imagery to improve our understanding of the

Table 20.7 Statistics of change: land devoted to plasticulture

Year 1984 1989 1992 2000 2004

Plasticulture area (km2) <1 2.8 5.1 15.6 20
Non-plasticulture area (km2) >166 164.2 161.9 151.4 148
Proportion of the area <2% 2% 3% 10% >13%
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regional geology, tectonics and hydrology in the
Tabernas–Andarax Basin of Almeria Province,
Spain. The focus is on the applied use of remote
sensing and GIS in the interpretation and explora-
tion of a region’s water resources. While the topic
seems to concern mainly geological concepts, the
reason for concentrating on these phenomena is to
reveal the controls on the sustainable rural economy
in this semi-arid area. The geography and location
of this case study area are illustrated in the map in
Figure 20.24 and in Figure 19.1.

20.4.2 Geological and hydrological setting

Unlike the Nijar Basin to the east, this area is
predominantly devoted to open agriculture with the
use of greenhouses only now increasing steadily.
Water has been plentiful enough here to support the
prolific growth of citrus fruits, not possible in the
Nijar area, but only through systematic irrigation.
The area under active irrigation is reported to have

increased to some 14 000 ha in the last 20 years
(Pulido-Bosch et al., 1994; Gallego et al., 2006).

Water resources are recycled continuously,
resulting in a concentration of solutes and a gradual
degradation of water quality. This degradation has
been severe enough, in the last few years, to cause a
marked decrease in productivity and a decline in
local economic terms. By contrast, the areas of the
Andarax Valley nearer to Almeria city have experi-
enced these effects far less since their economic
stability is lifted by the growth of Almeria city
which it owes partly to the successes of plasticulture
in neighbouring areas. Research by Pulido-Bosch
et al. (1994) involved the analysis of piezometric
data (collected by the IGME) in boreholes between
the towns of Almeria and Gador along the Andarax.
All boreholes show a significant decrease in water
levels between 1973 and 1987. Their work also
showed that the salinity of groundwater increases
south-eastwards, towards Almeria. Discharge from
the basement aquifer occurs mainly through springs
and below ground level directly into the River

Figure 20.24 Map of the main aquifers in this area: fractured karstified basement, deep sedimentary and alluvial.
Modified after Pulido-Bosch et al. (1994)
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Andarax. Recharge is through winter rain and
snowfall on the Sierra de Gador (Figure 20.25), and
to an extent on the Sierra Nevada to the north-west.

The characteristic lithologies of the area range in
age from the Permo-Triassic to Quaternary. Those
of the Sierra Gador basement massif comprise
Alpujarride nappes of dolomites, schists and mar-
bles. The Andarax Basin is filled by a sequence of
sedimentary units of Neogene (Messinian and Plio-
cene) andQuaternary age. To the north, the Sierra de
los Filabres is dominated by mica schists (in this
area). There are three main aquifers which provide
groundwater to the area. These are deep, fractured
and karstified basement carbonates of the Sierra de
Gador, unconsolidated Messinian sediments in the
Andarax Valley, and, above these, shallow Pliocene
and Quaternary alluvial and deltaic sediments
which are exposed along the length of the valley
(Pulido-Bosch et al., 1994).

The entire region is tectonically active today. The
most recently recorded deformation in this area is
related to movement along the Carboneras fault and
has produced faults, oriented approximately
NNW–SSE,with vertical displacements of the order
of 10m. These can be seen in the Quaternary fan
deposits at many localities of this region. The Sierra
de Gador, Sierra de los Filabres and Andarax Basin

are separated by much older major basin-bounding
faults, whose displacement history is complex,
many ofwhich have been reactivated in recent times
and now provide pathways for water.

20.4.3 Case study objectives

The overall objective of this study is to demonstrate
the uses of multi-temporal, multi-spectral imagery
in improving the understanding of geology and
water resources, in a semi-arid area which is
supported, dominantly, by a rural economy. The
value of land here is relatively low, solar energy is
plentiful and so the real limiting factor on the
sustainable economy has always been the availabil-
ity of water. The questions are, therefore, what
controls the presence of water and what can we
glean from the data we have about its presence?

With remote sensing we ‘see’ only the surface of
the ground and therefore only the exposed rocks,
soils and vegetation; from these we must extract (or
infer) information relating to water resources at
depth. The study area is quite large (25� 25 km2)
sowe chosemedium-resolution imagery for the task
(in this case Landsat). Our approach begins by
enhancing surface features which then enable us to

Figure 20.25 The Andarax river valley lookingwest, with the Sierra de Gador in the left background. The barren higher
slopes appear in great contrast to the lush growth in the valley floor
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interpret sub-surface phenomena: vegetation type
anddistribution; geology and potential aquifers; and
the surface expressions of structural features, i.e.
faults and joints (fractures in general), which act as
pathways for water once it penetrates the surface.

The main objectives are therefore to:

. Locate natural and cultivated vegetation.

. Distinguish the main litho-tectonic units.

. Enhance and identify the main structural
elements.

. Examine how these pieces of evidence reveal and
explain the connections between land use, water
and geology.

These goals will be achieved by:

1. Preparing a multi-temporal, multi-spectral, me-
dium-resolution dataset.

2. Simple directed processing of multi-spectral
imagery.

3. Interpretation of land cover, geology and
geomorphology.

Our database for this study consists of multi-
temporal Landsat images, digital aerial photo-
graphs, images and DEMs (both ASTER and
SRTM) as summarized in Table 20.8. As in the
previous example, all data conform to WGS84 data
and UTM zone 30.

20.4.4 Land use and vegetation

To get a first glimpse of the importance of water in
this environment, one need only look at the distri-

bution of vegetation since it cannot survive without
water. Both the cultivated vegetation and natural
plant cover are important here. The transportation of
water is expensive and might be prohibitive to
economic agriculture if it were necessary, so the
existence of extensive areas of cultivated land sug-
gests that plentiful, natural water supplies are in
close proximity. The density and intensity of culti-
vation along the Andarax river valley suggests that
water is indeed plentiful. In contrast, the distribution
of natural vegetation on adjacent hillsides reveals
several things, including the whereabouts of the
main recharge areas (where rainfall is incident),
areas where the rocks and soils hold water and those
where evapotranspiration is relatively low (largely
on north-facing slopes).

Standard false colour composites of bands 432
(RGB) reveal significant patterns in the distribution
of vegetation (Figure 20.26). The most obvious one
is the marked absence of vegetation in the centre of
the area, in the ‘badland’ terrain occupied by Mes-
sinian and Pliocene sediments of the Tabernas–
Andarax Basin. What little vegetation exists here
closely follows the river networks which drain
southwards into the Andarax. In contrast, the
Andarax river valley, which runs from west to east
along the northern margin of the Sierra de Gador
before turning southwards towards Almeria and the
Mediterranean, contains the most noticeable area of
dense vegetation. Along this valley cultivation is
intense; fruits and vegetables of every kind, espe-
cially citrus varieties, have been grown here for
hundreds of years.

The sierras are characterized by an even cover-
ing of natural upland scrub vegetation, which gives
them a pale reddish tinge in the 432 (RGB) image.

Table 20.8 Multi-temporal datasets used in the case study

Dataset Scene identifying numbers Acquisition date(s)

Landsat-5 TM Subset of path 199/row 034 1984, 1989, 1992
Landsat-7 ETMþ Subset of path 199/row 034 2000
Aerial photography Ortho-quads (Junta de Andalucia air survey) 2004
SRTM DEM 90m spatial resolution 2001
ASTER DEM Subset area of Landsat path 199/row 034, 30m spatial

resolution
2001
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The effect of topography on this natural vegetation
distribution can be clearly seen across the water-
shed of the Sierra de los Filabres in the northern
part of the study area. On the south-facing slopes of
the sierra (south of the watershed) any kind of
vegetation seems extremely sparse, whereas the
north-facing slopes are covered with healthy vege-
tation and in many places this local climatic effect
of topography allows the successful growth of
managed coniferous forests. The geology and hy-
drology of the Sierra de Los Filabres is rather
different from that of the Sierra de Gador to the
south. Here the dominance of relatively imperme-
able rocks and south-facing slopes means that
evapotranspiration is high, whereas porosity and
rainfall infiltration are low. These south-facing
slopes are largely barren and devoid of healthy
vegetation. On closer inspection, the sparsity of
vegetation on the southern side can be seen to be
punctuated by several tiny flushes of healthy
vegetation in valleys, high on the flanks of the
mountains. At these locations several villages can
be seen, in small white patches in Figure 20.27, on
the slopes, about 1000m above sea level and in a

linear arrangement. Below each village, there is
noticeably more healthy vegetation than above.
Given the altitude, climate and lack of aquifer
here, we conclude that the villages only survive
because of a perennial supply of water. We also
notice that the villages are aligned and therefore
interpret that they are located where the valley
floors are intersected by a fault or fracture (black
dashed line in Figure 20.27) which brings water to
the ground surface at natural springs.

The Sierra de Gador is composed dominantly of
dolomite, with some phyllites and schists. The
dolomite is fractured and karstified and presents
considerable secondary porosity; as mentioned
earlier, it forms the major aquifer here. The river
flows from west to east and south, along the
northern margin of the Sierra de Gador, and into
the Mediterranean at Almeria. A very noticeable
strip of healthy vegetation can be seen along its
length and on the lower reaches of some of its
tributaries. Again we must consider what water
source is great enough to support such prolific
cultivation here. The reason is that, at this margin,
water held in the dolomitic basement aquifer is

Figure 20.26 Colour composite of bands 432 DDS (2000) revealing the extent and distribution of vegetation across
the Tabernas–Andarax Basin, in red tones. The darker, more contiguous areas of red represent managed upland forest.
The remainder of the upland areas are covered by scrub vegetation which appears as a pale reddish tinge
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forced to the surface at numerous fault springs and
then feed into the Andarax. The simple model, for
the regional geology of this area, is of a classic
half-graben, with the southern margins of all the
basins being faulted and the northern margins
being gently sloping. This is of course an oversim-
plification but it is a useful model that fits quite
well here.

We also notice that no such cultivated river valley
exists on the gently sloping southern margin of the
Sierra de los Filabres. The reasons for this are
complex and rely at least partly on the fact that the
lithologies are dominantly impermeable so that no
large-volume aquifer exists on that side of the basin.
Thus the plentiful water here could be considered an
accident of geological evolution.

Looking at the standard false colour composites
of the Andarax Valley in detail, it can be seen that
there has been little change in the extent of
cultivation along the valley over the past 20 years
or so. The image of 2000 (Figure 20.28d) reveals
the appearance of some plastic greenhouses repla-
cing open cultivation but no substantial change in
the geographic extent of the cultivated area. The
town of Alhama seems also to have expanded
in recent years, perhaps because the success of

cultivation has meant increased prosperity, attrac-
ting growth and development. Some of the land in
and around the town, which was clearly cultivated
in 1992, now appears to be urban or devoted to
greenhouses.

Closer inspection of the central part of the
Tabernas–Andarax Basin, using a calculated NDVI
(Figure 20.29), reveals a thin covering of vegeta-
tion which appears to be relatively less dense or
less photosynthetic, or both. This represents the
natural scrub which is characteristic of this and
most semi-arid areas. The covering is patchy and
its distribution is affected by small-scale topo-
graphic and lithological (porosity) variations and,
in areas of unconsolidated materials, by potential
vulnerability to surface erosion. The highest values
(white) appear where there is cultivated vegetation
and forested areas, followed by north-facing slopes
of the sierras which are populated by healthy
natural vegetation (pale grey), with the remaining
low-lying basin areas being populated by a very
thin, chlorophyll-poor covering of scrub vegetation
(darkish grey). The newly completed motorway
link to Granada and the main channel of the
Andarax river valley show the lowest values
(black)

Figure 20.27 Landsat 432 DDS subset of the image shown in Figure 20.26 (north-eastern corner). The Sierra
de los Filabres villages of Olula de Castro, Castro de Filabres, Velefique and Senes (from south-west to north-east)
appear in white on the largely barren south-facing slopes, high up and in a linear arrangement. There is noticeably
more healthy vegetation below each village than immediately above, suggesting a structurally controlled water
pathway. Notice also the dense natural vegetation (and forestry) on the northern side of the range’s watershed. Field of
view is ca 12 km
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20.4.5 Lithological enhancement and
discrimination

Now we draw attention specifically to the geology,
although, as we can see from our observations of
vegetation above, it is difficult to avoid the geology
since it has a controlling influence on many natural
phenomena in this area.

If we begin once again with simple colour com-
posites and the general enhancement of rocks and
soils, we may start with a simulated true colour
image (Figure 20.30) to visualize the main targets
of interest as wewould see themwith the naked eye.
We notice that the sierras appear in dark greys,
browns and bluish tones, with the sediments and
soils of the basins appearing in paler greys, dull
cyan, buff brown and greenish tones. We can make
some simple but confident divisions of these
broad classes from this image alone, as shown in
Figure 20.30. Urban areas, buildings and green-
houses appear near white and vegetated areas appear

in very dark grey. These make up the majority of the
area. Noticeable against this background are a few
areas of reddish brown, the largest of which lies to
thewest of the town of Gergal. The reddish colour in
this image indicates higher reflectance in band 3 and
low reflectance in bands 2 and 1, and represents
something which looks red to the naked eye.

If we also look at a colour composite of bands 531
DDS (Figure 20.31), which as we know is often the
best combination for geological discrimination in
semi-arid areas, we are presented with a very useful
image revealing many of the significant lithologies
very clearly in a variety of vivid colours. Looking
first at theNeogene andQuaternary basin sediments,
we see that they produce quite a complicated pattern
of colours and textures in the centre of the image.
The sierras appear as clearly distinguishable on the
basis of both tone and texture: the dolomites appear
in reddish brown tones while mica schists appear in
bluish purple tones. The Tabernas–Andarax Basin is
filled with Neogene and Quaternary sediments and

Figure 20.28 Standard false colour composites (bands 432 DDS) of the immediate Andarax river valley and the lower
reaches of the main tributaries, showing the extent and distribution of vegetation between 1984 and 2000; there has
been very little change in this time
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these appear in avariety of green, grey, blue, pinkish,
pale brown and yellow– brown tones. Some division
of these lithologies and a hint of folding are inter-
pretable from this area (as shown in Figure 20.31). In
this band combination, vegetation appears in very
dark reddish tones because it too has relatively low
reflectance in bands 3 and 1 and high reflectance in
band 5, but less high than the rocks and soils which
have their reflectance maxima at these wavelengths.
We notice that in this image, the patch of soils to
the west of Gergal (appearing red in the previous
Figure 20.30) appears in bright olive green tones,
indicating high reflectance in band 3 with lower
reflectance in band 5 and very low reflectance in
band 1.

Looking at this area in more detail, and referring
back to our 432 standard false colour composite

(Figure 20.26a), we see that what appears red in the
321 true colour image also appears in greenish
tones, again indicating high reflectance in band 3
(green colour gun here) but this time low in both
bands 4 and 2. This reflectance pattern is charac-
teristic of iron oxide and hydroxide minerals (such
as haematite and goethite), which also have a
typically reddish appearance to the naked eye. The
area also has a noticeably smooth texture and
appears relatively flat compared with the surround-
ing rocky hillsides, and we may conclude that it
represents a pocket of accumulated sediment or
soil. Generation of an iron oxide ratio image using
bands 3/1 (Figure 20.32), indicates several con-
nected patches with high iron oxide content,
relative to the surrounding rocks and soils. These
patches of ground suddenly become rather

Figure 20.29 Grey-scale image representing the NDVI, as calculated from the multi-spectral data of the Tabernas–
Andarax Basin. The highest values (white) appear where there is cultivated vegetation and forested areas, followed by
north-facing slopes of the sierras which are populated by healthy natural vegetation (pale grey), with the remaining
low-lying basin areas being populated by a very thin, chlorophyll-poor covering of scrub vegetation (darkish grey). The
newly completed motorway link to Granada and the main channel of the Andarax river valley show the lowest values
(black)
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interesting: why do we have a series of isolated
areas of reddish soils at this location (rich in iron
oxides) and not elsewhere?

Examination of the ASTER 30m DEM of this
area, as shown in Figure 20.32d (as a shaded relief
image), reveals two breaks in topography, one to the
north of the soil patches and amore subtle one to the
south. The soil patches appear aligned in a NW–SE
direction and each is elongated in a north–south
direction. Careful geological interpretation made
from these images and the DEM suggest a series of
alluvial fanswhich drain to the south from the Sierra
de los Filabres and are trapped by the topography
(see also the photograph in Figure 20.33). They lie
along a series of sub-parallel NW–SE-oriented
faults; these are related to the main basin-forming

fault systems. The northern part of these faults has
uplifted the land to the north, and the southern one
has uplifted to the south, producing a small graben
between the two. Comparison of the colour com-
posite of bands 531 with the DEM (Figure 20.32b
and d respectively) reveals that the basement lithol-
ogies in purple and brown tones correspond to the
topographic highs. This suggests a rather classical
model of uplift-induced erosion and transport of
debris from a mountain front and into a fault-
controlled topographic trap, producing isolated
pockets of sediment. The next question is the
reddish colour. The source area of the debris in
these pockets lies immediately to the north and
consists largely of mica schists, which contain a
lot of biotite, and this breaks down very readily and

Figure 20.30 Landsat-7 ETMþ simulated true colour image (321 RGB, DDS) of the Tabernas–Andarax Basin,
showing exposed metamorphic basement lithologies in brown (dolomites) and bluish tones (mica schist), with
unconsolidated Neogene and Quaternary sediments in cyan grey, buff brown, pale brown and greenish tones.
The boundaries between these appear quite clearly and have been indicated by dashed white lines. Vegetation
appears dark green and urban areas appear near white, as do areas which have been cleared for cultivation or
greenhouse construction
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may release its iron to the soils. The unconsolidated
nature of the transported debriswould then facilitate
rapid oxidization of the iron to give the red colour;
this may explain the presence of the iron oxides in
these soils.

The next question relates to the boundaries
between the lithologies of the sierras and basins –
canwe see these? The answer is yes, but the contacts
are not always crisp, linear or well defined. We
have already mentioned two of these (and that they
are mainly structural): the faulted contact to the
south (between the Andarax Valley and the Sierra
de Gador); and the gentle dip slope rising
northwards to the Sierra de los Filabres. One other
forms the northern boundary of the Andarax Valley
near Alboloduy and this is described in the next
section

20.4.6 Structural enhancement
and interpretation

One rather conventional method of enhancing
structural features in remotely sensed images com-
prises spatial filtering, using one or more kernels of
varying form and dimension to enhance or suppress
features of varying orientation. Choosing which
band choice a multi-spectral dataset to use presents
a further question. We might prefer to enhance the
band or dataset which has the highest spatial reso-
lution. In the case of the Landsat-7 ETMþ dataset,
this would be the 15m panchromatic band. In the
case of Landsat-5, however, with no 15m band we
must choose one of the VNIR bands; band 2 or 3
would constitute a good choice since these are less
affected by haze than band 1. The reason for spatial

Figure 20.31 Colour composite of bands 531 DDS for general geological discrimination. In this image, the dolomites
andmica schists of the basementmassifs appear in pinkish/reddish brown and darkish blue tones respectively. Neogene
and Quaternary sedimentary rocks appear as a variety of pinkish, buff brown, greenish, pale bluish grey and
yellow–brown tones (interpreted bedding traces have been indicated in dashed white lines). Vegetation appears in
very dark red and Quaternary red soils in bright olive green tones
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filtering in medium-resolution images is that we
often cannot see those structural features of interest
and so need a little textural help. We use filters to
enhance information of different frequencies, high
or low. For structural features we may use a high-
pass filter to enhance systematic changes in image
tone and contrast in the hope of detecting the surface
expressions of faults and fractures. At the opposite
extreme, filtering of a very high-resolution image,
such as the 2004 aerial photography, would seem
rather pointless in this sense, since it already gives
us unprecedented detail of ground surface features
and we can interpret even quite small-scale faults
and fractures directly (refer back to the table of

image mapping scales in Section 19.1). In fact a
VHR image may overwhelm us with so much
spatial detail that we can no longer see the really
significant regional-scale structures, so clearly
there is a balance to be struck and we need to think
carefully about what we are trying to achieve when
we (i) choose the data and (ii) decide how to process
them.

The structural trends in the study area are com-
plex and the dominant features lie largely on an
east–west orientation. These structures comprise
the major basin-forming normal faults which
were opening and lifting the sierras out of the
seas some 15 million years ago. Several other

Figure 20.32 Images of the Gergal area: (a) 432 RGB; (b) 531 RGB; (c) iron oxide ratio of bands 3 and 1; and (d) ASTER
DEM shaded-relief image overlain by a simple interpretation of the fan systems (dashed red lines indicate faults, solid
white lines indicate alluvial fan systems, the motorway is shown in brown for reference)
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older compressional structures (thrusts) exist
within the basement complexes of the sierras and
these also have an approximately east–west
orientation. There are several other structural
trends in the basin sediments, produced by Quater-
nary and post-Quaternary faults on approximately
north–south and NW–SE orientations. These are
largely normal or oblique-slip faults where the
dominant slip vector is vertical.

Highlighting the older basement structures using
directional filters is problematic since they are
commonly thrusts, which are low-angle structures
and produce distinctly nonlinear, rather sinuous
surface expressions. They tend to be highlighted
more easily by outcrop (lithological) variations and
relationships and so are best interpreted visually.
This is certainly the case along the south-eastern
margin of the eastern Sierra Nevada, near the town
of Aboloduoy (Figure 20.34c). Here the surface
trace of several thrust faults is highlighted by
the presence of relatively highly reflective Neogene
sediments (marls containing gypsum). These have
been thrust up, as slices betweenmetamorphic rocks
(phyllites), from the basin onto the flanks of the
Sierra. They form an eye-catching bright east–west-
oriented stripe of ground, the uppermost edge of

which is characteristically sinuous, hinting at its
low-angled relationship with the hillside. The aerial
photographic subset in Figure 20.34c provides great
detail, at visible wavelengths, of ground tones and
textures but only very subtle tonal differences
between the Neogene sediments and the phyllites.
In such situations, both spectral detail from Landsat
and spatial detail from the digital photograph are
vital to the understanding of structural context.

Thus,wemust concentrate on the basin-bounding
normal faults, and the Quaternary normal faults.
Given that there are two dominant trends, east–west
and NW–SE, we could use Sobel filters, or variants
thereof, to pick out selectively surface topographic
features which may indicate structural control. Al-
ternatively, we may choose a Laplacian filter, to
highlight any high-frequency textural information
and yield a generally sharpened image, or gradient
filters to enhance features of a particular direction
that we know to exist. The results of such experi-
ments are illustrated in Figures 20.35 and 20.36.
The use of a 5� 5 Laplacian filter yields the image
shown in Figure 20.35; this image is effective at
highlighting drainage patterns, watersheds and
land-use changes. The image is texturally complex
and subtle textural changes can be seen across some

Figure 20.33 Red-coloured alluvial fans near Gergal, looking south towards the flanks of the eastern Sierra Nevada
(rising to the right or west) and the Sierra de Gador (almost invisible in the far distance, centre left)
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of the larger structures, but otherwise the result
proves unhelpful in showing features that we do
not already know to exist. Directional Sobel filters
yield slightly more promising results as the images
in Figure 20.36 show. These images represents the
use of a simple 3� 3 Sobel filter (of the form
described in Chapter 4) to highlight features orient-
ed north–south (Figure 20.36a) and east–west
(Figure 20.36b). In these images, the main basin-
bounding faults can be discerned, though only
because we already know they are there. The most

conspicuous features are the bed of the Andarax and
its main tributaries, and the watershed of the Sierra
de los Filabres.

By far the most effective method of interpreting
and so extracting structural features is to use aDEM.
Since the featureswe are looking for are sub-surface
phenomena, only some of which may intersect the
surface, the main way we can interpret them is by
looking at the physical surface to identify system-
atic topographic expressions which may have
structural significance, and hopefully by correlating

Figure 20.34 Thrusted contact near the town of Alboloduy: (a) colour composite of bands 531 DDS showing the slice
of thrusted basin sediments (marls and gypsum) in bright yellow and orange tones surrounded bymica schists (blues) to
the north and other basin sediments (cyan, red and greenish tones) to the south (the black box indicates the coverage
of the aerial photograph in (c)); (b) photograph of basement metamorphic rocks and basin sediments thrusted to
the north-west (left), looking north-eastwards along the line of the thrusted contact; and (c) 2004 aerial photograph
showing VHR detail of the thrust belt near the town of Alboloduy (the red spot shows the location at which the
photograph in (b) was taken)
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some of them with image spectral variations to
make an interpretation. Although the image spectral
variations along the boundaries between these ter-
rain units seem subtle and complex, when we focus
on the DEM we are able to see several important
pieces of information. The Tabernas–Andarax
Basin appears clearly in the low-lying areas (darker
blues in the DEM shaded-relief image) while the
high ground of the sierras is visible in bright
oranges. The relatively abrupt change in slope
between the Sierra deGador and theAndaraxValley
can be seen in contrast with the gradual northward
slope up to the Sierra de los Filabres. We also begin
to see the subtle topographic changes of the alluvial
fan systems at Gergal (and Tabernas) in addition to
their location with respect to the regional structure,
as shown in Figure 20.37. These are evidence of
relatively recent tectonic activity.

If we then calculate the slope angle (in degrees
in this case) from the DEM surface, we can exag-
gerate these expressions to see them rather more
easily (as shown in Figure 20.38). The main basin-
bounding faults and many others are revealed by
systematic and relatively abrupt changes in gradi-
ent. In contrast, the areas occupied by recent alluvial
fans are characterized by slope angles of less
than 10� and, in the central part of the fan systems,
less than 3�.

If we then combine all the fragments of geologi-
cal knowledge we have gained so far, we can
produce a simple regional litho-tectonic interpreta-
tion map. This presents the main lithological
groups, the major structural elements, recent depo-
sitional features (tectonically triggered alluvial fan
systems) and the regional aquifers together, thus
providing us with a tool to understand better the

Figure 20.35 (a) Landsat ETMþ band 2 enhanced using a Laplacian filter 3x3. This filtered image is most ineffective
for the detection of faults and fractures. Only the most systematic and extensive features are detectable, such as the
WSW–ENE trending ridge through the Tabernas Basin which is clearly visible. Otherwise the drainage, vegetation and
urban areas near Alhama are highlighted, as is the sharp boundary between the Sierra de Gador and the Andarax Basin
sediments
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connections between topography, geomorphology,
geology, water and agriculture/land cover (land
use). The result of this compilation is shown in
Figure 20.39.

20.4.7 Summary

This case study is a rather good example of one
where we let the images speak for themselves in

Figure 20.36 Landsat ETMþ band 2 enhanced using Sobel filters to show linear features on (a) N–S and (b) E–W
orientations. Many of the main basin bounding faults are highlighted in these images

Figure 20.37 SRTM DEM shaded-relief image of the Tabernas–Andarax Basin, with interpreted structures and alluvial
fan systems overlain
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guiding us towards features of potential interest,
rather than approaching the work with a very fixed
agenda. Both approaches have their place but when
faced with an unknown area and a remit of explora-
tion and understanding, it is often sensible to begin
by looking at the most obvious, eye-catching
features and then proceeding gradually to the more
complex issues. It has also become very clear that
water and geology are intricately linked in this area,
so that one cannot understand the former without
considering and discovering the latter. It is a
complex area and so we have attempted to cover
only a few of the more interesting ones here.

We find that convolution filtering is not always
useful or effective in identifying faults from imag-
ery – you will enhance many surface edges and
textural boundaries which bare no connection to
sub-surface structures; you may be lucky enough to
find some faults. The point to be learned is that
filtering should be used when you have a very clear
objective and one which is related to purely surface
targets. In fact, finding faults in images is more

about using your eyes and applying your geological
knowledge than about processing images. Quite
often it is a matter of what you do not see that may
point to the existence of sub-surface control. For
instance, the presence of the three villages, aligned
and high up in the mountains without obvious
means of supply, could point to a leaky mains pipe
but in this environment is more likely to indicate the
presence of a spring line. Your understanding of its
geological or geomorphological context will then
be required to determine whether that spring line is
controlled by underlying stratigraphic or structural
features. The observation of topographic expression
along that line may not be sufficient indication in
itself since the expression could still be produced by
either form of control. Clearly quite a bit of detec-
tive work is required. Only when you have spectral,
topographic and stratigraphic agreement can you be
reasonably sure that you have identified a fault;
however, here again your knowledge and experi-
ence will come into play. In any case, you will
certainly want to make a field visit to the location to

Figure 20.38 Slope (gradient) as calculated from the SRTM DEM, in degrees, and displayed using a red–blue colour
lookup table. Interpreted structures and the alluvial fans interpreted earlier are shown
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satisfy yourself and to understand better the geom-
etries of the features on the ground.

The farmers here become victims of their own
success since increased demand for their products
leads to massive expansion, as in the Nijar area, and
increasing pressure on existing resources. This then
leads to many questions about sustainable develop-
ment and the effective management of renewable
resources. In this case the cost is not only the
reduction of available water but also its quality.
Here again, we study a problem retrospectively,
leading one to the question the benefit of doing so,
given that the real problem has been known about
for some time. In doing so, however, we learn many
things and begin to understand the necessary ap-
proach and methods, and we can then potentially
establish a methodology to be applied in other areas
andwhich could be used to give a spatial context to a
problem.

Questions

Section 20.1

20.1 In order to separate gypsum quarries from
gypsum natural outcrops, TM3 is added to the
last operation of formula (20.2). Can TM1 or
TM2 be used instead of TM3 and, if so, why?

20.2 Following the logic of formulae (20.1)
and (20.2), try to design a ratio-based image
processing procedure to enhance gypsum and
extract gypsum quarries.

Section 20.2

20.3 The corresponding ASTER and ATM formu-
lae of the compound differencing colour com-
posite in this case study are slightly different.

Figure 20.39 Summary regional geological interpretation, bringing together lithological and structural information
interpreted from the image data and DEM, to produce a regional litho-tectonic map; this can then be used for better
interpretation of natural water resources. The aquifer types shown here are those described earlier in the text. Modified
after Pulido-Bosch et al. (1992)
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Try to find the difference between these two
groups of formulae and explain why they have
been so designed based on the image spectral
profiles of argillic alteration, siliceous alter-
ation and gypsum and the spectral bands of the
two datasets.

20.4 Based on the ATM spectral profiles, explain
why PC3 produces high values for gypsum
and very low values for argillic alteration
zones and the ferroan dolomites.

20.5 Explain how gypsum is enhanced in deep
blue in Figure 20.15. Comment on the
lesson that we can learn from this particular
scenario.

Section 20.3

20.6 Very high-resolution imagery provides un-
precedented spatial detail of the land and of
the greenhouses in this case. Do we really
need this detail to carry out the kind of tem-
poral analysis that we have done here?

20.7 Why might the increase in plasticulture and
the decrease in open vegetation not be reci-
procals of one another? What else might be
happening?

20.8 Without resorting to a ground survey of every
individual greenhouse, how else might we
improve on this work to estimate greenhouse
coverage more accurately?

Section 20.4

20.9 Which other surface parameters could be
usefully applied here?

20.10 How would you go about estimating how
much rainfall enters the groundwater (and
the Gador aquifer) here?

20.11 What limitations are imposed by the data
(Landsat and SRTM DEM) on the interpre-
tation in this case? What data would you
advise?
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21
Research Case Studies

The chapter is based on the authors’ published
research papers. The intention of this chapter is not
to cover every aspect of remote sensing applications
but, instead, using several case studies, to share our
experiences with you on the following:

. How to think through and formulate an applica-
tion research project.

. How to design and develop the most effective
image processing techniques and strategy for
extracting the required thematic information from
images.

. How to establish the most representative and
powerful GIS model to serve the objectives of
the project.

. How to approach the data analysis and the pre-
sentation and critical assessment of results.

21.1 Vegetation change in the three
parallel rivers region,
Yunnan province, China

21.1.1 Introduction

In this case study, multi-temporal Landsat-5 TM
and Landsat-7 ETMþ image data were used to
assess the change of vegetation coverage. With a
simple and effective methodology based on the
NDVI, the study aims to identify areas subject to
rapid vegetation destruction, as well as to detect any

possible signs of vegetation revival, in the ‘Three
Parallel RiversRegion’ in south-westernChina (Liu
and Meng, 2005).

The area lies within a north–south orogenic belt
where the edge of the Eurasian plate is being
compressed from the west by the underlying east-
ward subducting Indian plate. This continental-
scale tectonic movement has squeezed and uplifted
the terrain dramatically to form the north–south-
oriented HengduanMountains which lie contrary to
the dominant east–west trend of the major moun-
tains further to the north. In this intensely sheared
north–south tectonic zone, three great sub-parallel
rivers flow in deeply cut valleys separated by high
mountains (World Heritage Nomination – IUCN
Technical Evaluation, ID No. 1083, 2003). These
three rivers from west to east are: Nujiang River
(Salween in Burma), Lancang River (Meigong in
Vietnam) and Jinsha River (the upper reaches of the
Yangtze). The Three Parallel Rivers Region was
awarded the prestigious status of ‘World Heritage’
site by UNESCO in 2003 (World Heritage 27 COM
8 C.4, 2003) for its great diversity of landscape,
vegetation, animal species and human culture (nat-
ural site datasheet from WCMC). With this new
status, the conflict between economic development
and environmental protection has intensified. The
balance between the two will decide the fate of this
rare natural beauty. With abundant water resources
and tremendous potential for hydroelectric power,
vegetation is a key factor for maintaining a healthy
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ecological system. Once it is destroyed, severe
erosion will occur and the damage will not be
restricted to the local environment but will extend
further downstream to Burma and Vietnam.

21.1.2 The study area and data

The study area is in the north-west corner of Yunnan
Province, China, and adjacent to Burma in the west
(Figure 21.1). It is within a TM/ETMþ scene of
path-raw 132-041 extending from 28�605200 to
26�4504800Nand 98�2301300 to 99�5405300E, covering
much of the Three Parallel Rivers Region. The three
great rivers are almost parallel to one another in this
area; at their closest, they are no more than about
63.4 km apart.

The data were acquired from the Global Land
Cover Facility, UMIACS (University of Maryland
Institute for Advanced Computer Studies). The TM
image used in this study was taken on 15 November
1994 and the ETMþ image on 25 December 2000;
the temporal separation between the two is 6 years,
1 month and 10 days, while the seasonal difference
is 40 days (Table 21.1). Image co-registration qual-
ity is crucial for multi-temporal image comparison.
Both images have been ortho-rectified to WGS84
NUTM47 to a high accuracy at source and, as a
result, the two images are precisely co-registered
without visually observable mismatches even when
viewed at pixel level.

21.1.3 Methodology

The NDVI is a well-established and robust tech-
nique for mapping vegetation based on the diag-
nostic absorption feature in the red (R) spectrum
and very high reflectance in the NIR spectrum
(Gausman, 1974; Lilesand andKiefer, 2000). These
two spectral ranges are denoted as bands 3 and 4 in
TM and ETMþ image data. One of the advantages
of NDVI is that it is normalized to a standard value
range from�1 to 1 and thus theNDVIs derived from
different images are comparable in the same value
range. The technique has been widely used for
assessment of changes of vegetation status, land-
use patterns and ecological parameters (Cihlar,
St-Laurent and Dyer, 1991; Lambin and Ehrlich,
1997; Mantovani and Setzer, 1997; Li, Tao and
Dawson, 2002; Wang, Price and Rich, 2001).

21.1.3.1 The NDVI difference red, green
and intensity composite

The main purpose of the study is the mapping
not simply of vegetation but of the changes in

Figure 21.1 Locationmap of the study area in the Three
Parallel Rivers Region, Yunnan Province, China

Table 21.1 Image data of the study area

Image 132-041 Dates (y-m-d)
Temporal
separation

Seasonal
difference

TM 1994-11-15 6 years, 1 month
and 10 days

40 days

ETMþ 2000-12-25
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vegetation coverage in the region. To this end, we
have composed a simple and effective method to
highlight the areas subject to significant change
using multi-temporal NDVIs incorporating thresh-
old criteria as described below.

NDVI difference red, green and intensity (NDVI-
D-RGI) composite:

Red : If NDVI1>C1 AND ðNDVI1�NDVI2Þ
>T1 then NDVI1 else NULL

Green : If NDVI2>C2 AND ðNDVI2�NDVI1Þ
>T2 then NDVI2 else NULL

ð21:1Þ
Intensity : ETMþ band 4

where C and T are the vegetation criterion and
vegetation difference threshold. The value range
for both parameters is [0, 1]. The numbers 1 and 2
denote the time sequence of the two images in
comparison.

The NDVI-D-RGI composite defined by formu-
la (21.1) produces a vegetation change image. The
red layer highlights vegetation destruction (areas
covered with healthy vegetation on imaging date
1 but no longer on date 2) in red, while all the
unchanged areas, either with or without vegetation
on both dates, are output as null. Similarly, the green
layer highlights the areas of vegetation revival (no
vegetation on date 1 butwith vegetation on date 2) in
green and leaving all the unchanged areas as null.
Overlaying these red and green layers on the
ETMþ band 4 intensity layer presents vegetation
destruction in red, revival in green and unchanged
areas as achromatic imagery background. ETMþ
band 4 was chosen as the intensity layer for its high
intensity from vegetation and white appearance of
snow. Snow appears in black in bands 5 and 7 for its
absorption in the SWIR spectral range.

21.1.3.2 Parameter setting for the
NDVI-D-RGI

For vegetation comparison, it is vital to acquire the
multi-temporal images taken in the same month/
season or, better, on the same date/week. Unfortu-
nately, this is not often possible. Small seasonal
differences in image acquisition date may produce
non-negligible effects preventing a fair comparison
for vegetation change assessment. If the image of

NDVI1 is taken in a much warmer (or greener)
season than that of NDVI2, a direct comparison
between the two images may falsely indicate dete-
rioration of vegetation even if the actual vegetation
coverage and conditions are not really changed.
Conversely, if the image of NDVI1 is taken in a
much colder season than that ofNDVI2, an incorrect
conclusion of vegetation revival may be reached.
The vegetation criteria, C1 and C2, and the vegeta-
tion difference thresholds, T1 and T2, in formu-
lae (21.1) allow adjustment to reduce the seasonal
bias for vegetation change assessment and control
the significance level of the vegetation change to be
detected.

The vegetation criteria C1 and C2 decide if
an NDVI value is acceptable as vegetation or not,
thus eliminating non-vegetation pixels. For TM and
ETMþ images, the DNs of vegetation in the near
infrared (band 4) should be significantly higher than
those in red (band 3), therefore the NDVI of vege-
tation should always be positive, thus C1 > 0 and
C2 > 0 ensure positivevalues of theNDVI to remove
obvious non-vegetation areas. Higher thresholds of
vegetation criteria, C1 and C2, set harsher condi-
tions to reject more pixels from being recognized as
vegetation.

The vegetation difference thresholds T1 and T2
set the significance levels of vegetation changes
between the two images. For the red layer in (21.1),
the vegetation pixels in the NDVI1 image are dis-
played in red only when their values are greater than
their corresponding pixels in the NDVI2 image by
a difference of no less than T1. In this way, pixels
showing no significant vegetation change will be
eliminated as null. Similarly, T2 will eliminate
pixels showing no significant vegetation change in
the green layer. Relatively high T1 and T2 thresh-
olds ensure a critical assessment of significant
vegetation change (either destruction or revival)
while low values of T1 and T2 make an NDVI-D-
RGI composite sensitive to changes to both vegeta-
tion conditions and coverage. The C parameters are
partially controlled by the corresponding T para-
meters. For a given T, the NDVI difference defined
in (21.1) is not sensitive to the variation of C when
C< T. For instance, for a given T1, any pixel of
C1 <NDVI1 < T1 will be eliminated unless the cor-
responding NDVI2 has a negative value that makes
up the difference ofT1�C1. TheC parameters only
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have strong effects on the NDVI difference when
C> T.

In general, a higher vegetation criterion and a
higher vegetation difference threshold should be set
for the NDVI image taken in a warmer (or greener)
season so as to compensate for the vigorous effect
of vegetation. The value of C1 or C2 should be set
proportional to the seasonal greenness, i.e. the
greener the vegetation on the imaging date, the
higher its vegetation criterion should be, but this
simple principle is not applicable in areas of high
relief. TheNDVI cannot effectively suppress topog-
raphy and may yield much lower values for vegeta-
tion in dark shadows than on illuminated slopes.
A high vegetation criterion (C1 or C2) removes too
many vegetation pixels in areas of dark shadows but
a low criterion makes this parameter nearly redun-
dant if C < T. The vegetation criterion is therefore
effective only for seasonal compensation in low
relief and flat areas.

More effective compensation can be achieved by
setting different values for T1 and T2 depending on
the seasonal greenness difference between the two
images in formula (21.1). A higher vegetation dif-
ference threshold should be set to the NDVI image
of a warmer (greener) season. For instance, if
NDVI1 is taken in a greener season than NDVI2 in
formula (21.1), then we should set T1 > T2. The
difference between T1 and T2 decides the strength
of the compensation to seasonal greenness bias.

The specific parameter setting and its effects
can be adjusted and judged empirically, with re-
ference to NDVI image statistics. Comparisons
between the standard false colour composites of
the two dates, in conjunction with the NDVI-D-
GRI composite, can help to ensure effective pa-
rameter settings and accurate detection of evident
vegetation changes.

21.1.4 Data processing

As shown in Table 21.1, the temporal separation
between image 1 (TM) and image 2 (ETMþ ) is
6 years, 1 month and 10 days while the seasonal
difference between them is 40 days. The imaging
date of the TM image is in a warmer month,
15 November, than that of the ETMþ , 25 Decem-
ber. Without any actual vegetation change, the TM
image would appear ‘greener’ or with a higher
average NDVI than the ETMþ image. To ensure
that the weak signal of vegetation in deep shadows
is not eliminated, the vegetation criteria for both
images were set to a low positive value C1¼C2¼
0.1.As shown inTable 21.2, themean andmedian of
the TM NDVI image are significantly higher than
those of the ETMþ NDVI image. This is likely
caused by both the seasonal bias and the significant
reduction of vegetation coverage over 6 years. To
compensate for the seasonal effects, the general
setting for the vegetation difference thresholds is
T1> T2. Three different sets of T1 and T2 with in-
creasing thresholds for vegetation change were ap-
plied for comparison (Table 21.2). All these settings
are slightly favourable to vegetation revival (green
pixels) in the resulting NDVI-D-RGI composite to
avoid exaggeration of vegetation destruction.

Linking NDVI-D-RGI composites with standard
colour composites of TM and ETMþ , we can
observe how different settings affect the detection
of vegetation change, as illustrated in Figure 21.2.
The number of pixels identified as vegetation de-
struction (red pixels) decreases considerably with
increasing T1 while the number of pixels represent-
ing vegetation revival (green pixels) decreases with
increasing T2. The first set of parameters (T1¼
0.20, T2¼ 0.15) with T1� T2¼ 0.05 is equivalent
to boosting the mean of NDVI2 by 0.05 and the

Table 21.2 TM and ETMþ NDVI statistics and settings for parameters C and T

Colour Images: NDVI

NDVI statistics
C1 T1

Mean Median Std dev. C2 T2

Red TM: NDVI1 0.299 0.327 0.225 0.1 0.20 0.25 0.30
Green ETMþ : NDVI2 0.204 0.205 0.195 0.1 0.15 0.15 0.20
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resulting image in Figure 21.2c can be interpreted as
change in both vegetation condition as well as
coverage. The second set of parameters (T1¼ 0.25,
T2¼ 0.15) with T1� T2¼ 0.1 boosts the mean of
NDVI2 to a level slightly higher than that ofNDVI1.
With the increased T1 and T1� T2, the resulting
image in Figure 21.2d more critically targets the
severe vegetation destruction which caused the
decrease in vegetation coverage (see Figure 21.2a
and b). The image derived from the third set of
parameters (T1¼ 0.3, T2¼ 0.2) in Figure 21.2emay
well represent too harsh an assessment; many pixels
showing obvious changes in vegetation coverage in
Figure 21.2dwere eliminated by the high vegetation
difference thresholds T1 and T2.

Apart from the dominant image features relating
to changing vegetation coverage, there are several
sources of error which produce odd features in the
NDVI-D-RGI composites. The snow coverage in
the two images varies according to the season and
the weather conditions. Avegetated area with snow
cover in the TM image butwithout snow cover in the
ETMþ image will appear in green in the NDVI-D-
RGI composite, meaning an incorrect indication of
vegetation revival, because the snow is recognized

as indicating no vegetation in the TM image. The
opposite results in a red patch in the NDVI-D-RGI
composite, and indicates a similar false alarm for
vegetation destruction. The vegetation coverage
change detected along the edge of the permafrost
zone in the high mountains must therefore be veri-
fied carefully. Clouds introduce the same type of
errors under the same logic.

Both snow and clouds have their strongest re-
flectance in the blue spectrum, recorded in TM/
ETMþ band 1, and thus can be effectively elimi-
nated using a blue band threshold in NDVI gener-
ation as below:

NDVI1 ðTMÞ :
If band 1< 70 then ðband 4� band 3Þ=
ðband 4þ band 3Þ else NULL

NDVI2 ðETMþÞ :
If band 1< 80 then ðband 4� band 3Þ=
ðband 4þ band 3Þ else NULL:

The thresholds for the two images are set slightly
different as the average DN level of ETMþ band 1
is slightly higher than that of TM band 1.

Figure 21.2 The effects of T (vegetation difference threshold) parameter setting on NDVI-D-RGI composites: (a) the
1994 TM 432 RGB image; (b) the 2000 ETMþ 432 RGB image; (c) the NDVI-D-RGI composite derived from T1¼ 0.20,
T2¼ 0.15; (d) the NDVI-D-RGI composite derived from T1¼ 0.25, T2¼ 0.15; and (e) the NDVI-D-RGI composite derived
from T1¼ 0.30, T2¼ 0.20
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As shown in Figure 21.3, the high mountain was
coveredwith both snow and clouds in the TM image
(Figure 21.3a) but covered with snow only in the
ETMþ image (Figure 21.3b). In the NDVI-D-
RGI composite without the blue band thresholding
(Figure 21.3c), clouds and some scattered pixels of
snow are wrongly recognized as vegetation revival
in green. The green patches and scattered green
pixels corresponding to clouds and snow are effec-
tively removed in the image in Figure 21.3d by the
blue band thresholding, but there are still some
residual green patches which are caused by the
cloud shadows in the TM image and these cannot
be easily removed.

The NDVI-D-RGI composites used for the inter-
pretation of regional vegetation changes in the fol-
lowing section are all shown with the blue band
thresholding.

21.1.5 Interpretation of regional vegetation
changes

Visual observation indicates that the NDVI-D-
RGI composite with the second set of parameters
(Figure 21.4) provides a well-balanced estimate of
thevegetation change. In this image, areas subject to
significant vegetation destruction have been effec-
tively identified and there is no obvious evidence for
the exaggeration of subdued vegetation features
(possible seasonal effects) in the ETMþ image as
destruction of vegetation. On the other hand, the
image is ‘kind’, even to subtle vegetation revival,
and this is ensured by the large difference between
T1 and T2. This image is used as the principal image
for interpretation. The statistics of vegetation
changes derived from the NDVI-D-RGI compo-
sites, of the three different parameter settings, are

Figure 21.3 The effects of cloud, cloud shadow and snow: (a) the 1994 TM 432 RGB image where the mountain was
covered by both snow and clouds; (b) the 2000 ETMþ 432 RGB imagewhere themountainwas covered by less snow than
1994 and without cloud; (c) the large green patches in the NDVI-D-RGI composite are clouds and cloud shadows in the
TM imagewhile the scattered green pixels along the ridge of the snowmountain are caused by snow retreat in the ETMþ
image; and (d) after applying the blue-band threshold, snow retreat and clouds are effectively removed, while there are
still some residual green patches produced by cloud shadows that cannot be easily eliminated
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summarized in Table 21.3. Again, the statistics
derived from the image of the second parameter
setting are used as the basis for discussion while the
statistics of the other two images serve as lower and
upper limits.

The TM/ETMþ NDVI-D-RGI composite in
Figure 21.4 illustrates changes to vegetation cover-
age during the interval of 6 years. In general, the
region is largely covered by natural vegetation
(forests, bushes and grass), particularly in moun-
tainous areas. The limited areas devoted to agricul-
ture usually occur in relative flat areas or wide
valley bottoms but are not cultivated in winter.

Therefore the vegetation change detected using the
winter TM and ETMþ images in this study is little
affected by the change of cultivation in these crop
fields.

In reference to the whole study area, the widely
spread red patches in the NDVI-D-RGI composite
indicate that vegetation coverage has decreased
rapidly. As shown in Table 21.3, in the 2 255 227
hectare area, 209 999 hectares of vegetated land in
1994 became barren in 2000; the reduction is 9.3%,
according to the second set of parameters. Visual
interpretation indicates that most of the noticeable
green patches are caused by cloud shadows in the

Figure 21.4 The NDVI-D-RGI composite derived from 1994 TM and 2000 ETMþ images. The image shows the change
in vegetation coverage over the six years between the two imaging dates; red indicates vegetation destruction during
the period, green indicates areas of vegetation revival, while the grey-scale background presents the areas which are
unchanged
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TM image. Even if we accept these green patches as
vegetation revival, the net vegetation destruction
would still be 7.6%.

The most stunning features in Figure 21.4 are the
concentrated red patches along the Nujiang River
indicating an alarming rate of vegetation destruc-
tion, particularly in the northern section of the river,
as illustrated in Figure 21.5a. The standard false
colour composites of TM and ETMþ images
(Figure 21.5b and c) show that the Nujiang
River catchment was much better covered by vege-
tation than the catchments of the other two rivers,
but better vegetation cover means greater poten-
tial for destruction. The NDVI-D-RGI composite
(Figure 21.5a) highlights the areas where healthy
vegetation existed in 1994 (Figure 21.5b) but no
longer in 2000 (Figure 21.5c). The vegetation
coverage reduction in the 405 129 hectare area
along the Nujiang River is about 59 101 hectares,
amounting to 14.2% based on the second set of
parameters (Table 21.3). The area also shows a
slightly higher revival rate (1.9%) than the regional
average (1.7%) but this information is not reliable.
Scattered clouds in the 1994 TM image appear
mainly in this area which is nearly completely
cloud free in the 2000 ETMþ image. As a result,
those limited recognizable green patches are nearly
all produced by cloud shadows in the TM image
(see Figure 21.3). There is no clear evidence of

vegetation revival in the catchments. The severe
destruction of vegetation is mainly along the river
forming a belt. This may explain the dramatic
recent increase in flood and mudflow hazards in
the areas further downstream.

Parallel to and east of the Nujiang River is
the Lancang River. The destruction of vegetation
in the Lancang River catchments was the worst
among the three rivers and its status was already
poor in 1994when the TM imagewas taken, leaving
a lower potential for further deterioration. Conse-
quently, the decrease in vegetation coverage in the
Lancang River catchments appears not as signifi-
cant as that in the Nujiang River catchments but the
degradation of vegetation was still severe, particu-
larly on mountain slopes along the west bank of the
river, shown as scattered red patches in the NDVI-
D-RGI composite (Figure 21.6). The vegetation
coverage reduction rate calculated from the second
set of parameters for the 474 156 hectare area along
the LancangRiver is about 50 915 hectares (10.7%),
as shown in Table 21.3. The scattered green spots
around snowy mountain peaks in this area are, in
general, caused by snow cover which has retreated
slightly in the 2000 ETMþ image, but a few green
patches are noticeable and these indicate new plan-
tations (Figure 21.7). Accounting for all the green
pixels as vegetation revival, the net vegetation
destruction is 9.2%.

Table 21.3 Statistics of vegetation changes in the Three Parallel Rivers Region. The numbers in bold are
used in the text

Area name
pixels hectares

Parameter Destruction Revival
Net
(%)T1 T2 Pixels Hectares % Pixels Hectares %

Whole study area 0.2 0.15 4 442 614 360 851 16.0 477 969 38 823 1.7 14.3
27 765 180 0.25 0.15 2 585 403 209 999 9.3 477 969 38 823 1.7 7.6
2 255 227 0.3 0.2 1 448 928 117 689 5.2 288 444 23 429 1.0 4.2
Nujiang river region 0.2 0.15 1 124 343 91 317 22.0 98 760 8 022 1.9 20.1
5 109 595 0.25 0.15 727 621 59 101 14.2 98 760 8 022 1.9 12.3
415 029 0.3 0.2 443 325 36 009 8.7 67 492 5 482 1.3 7.4
Lancang river region 0.2 0.15 1 092 695 88 754 18.7 85 836 6 972 1.5 17.2
5 837 570 0.25 0.15 626 844 50 915 10.7 85 836 6 972 1.5 9.2
474 156 0.3 0.2 334 762 27 191 5.7 48 762 3 961 0.8 4.9
Jinsha river region 0.2 0.15 1 069 892 86 902 12.4 153 304 12 452 1.8 10.6
8 663 020 0.25 0.15 560 907 45 560 6.5 153 304 12 452 1.8 4.7
703 654 0.3 0.2 288 746 23 453 3.3 84 170 6 837 1.0 2.3
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Figure 21.6 Middle section of Lancang River in the study area. The NDVI-D-RGI composite (a) illustrates severe
destruction of vegetation along the west side of the river where the already poor coverage of vegetation has further
deteriorated, as shown in (b) the 1994 TM 432 RGB image and (c) the 2000 ETMþ 432 RGB image in comparison

Figure 21.5 North section of Nujiang River in the study area. The red patches in the NDVI-D-RGI composite (a) indicate
devastating destruction of vegetation, which can be clearly seen by comparing the standard false colour composite (b)
1994 TM 432 RGB image with (c) the 2000 ETMþ 432 RGB image. The green patches in (a) are caused by cloud shadow
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The Jinsha River lies further east of the Lancang
River. The Jinsha River catchments in the scene
show relatively good vegetation coverage and
the least change during 6 years as compared with
the other two rivers (Figure 21.4). The general trend
of vegetation in the Jinsha River catchments was
still in the direction of degradation, as indicated
by widely spread red spots in the NDVI-D-RGI
composite, as well as a few isolated red patches of
obvious vegetation destruction (Figure 21.8). Most
scattered green spots in this part of the image
indicate aweak revival of vegetation on some slopes
(Figure 21.8). Taking all the green pixels as vegeta-
tion revival, the net reduction of vegetation cover-
age in the 703 654 hectares of the Jinsha River
catchments in the study area is 4.7%, according to
the second set of parameters, which is significantly
lower than the areas along the other two rivers
(Table 21.3).

21.1.6 Summary

The data derived from this study only represent the
changes of vegetation coverage between 1994 and
2000. During a field investigation in 2004 and 2006,
we noticed that the local government and local

population have made a great effort in planting
trees and in protecting the natural vegetation, but
their efforts may be cancelled out by the massive
developments in road building, and other engineer-
ing work, in an attempt to fulfil the demands of
rapidly growing tourism since the Three Parallel
Rivers Region was granted status as a World Heri-
tage site. The picture in Figure 21.9 was taken in
Nujiang Valley in 2006; the massive destruction of
vegetation and soil loss are obvious and the damage
caused by road cutting was devastating.

As the assessment is sensitive to subjective
choices of parameters C and T, the accuracy of
the statistics of vegetation destruction derived
from this study is subject to detailed verification,
but the evidence of severe destruction of vegetation
and rapid reduction of vegetation coverage shown
by this study is unequivocal. The three sets of
parameters are all favourable towards vegetation
revival rather than destruction. The vegetation
destruction in shadowed areas can only be signifi-
cantly underestimated because of weak signals.
We therefore believe that the evidence of severe
vegetation destruction based on the second set of
parameters is reasonably close to the true situation
and is more likely an underestimation rather than
an exaggeration.

Figure 21.7 A new plantation is detected in the NDVI-D-RGI composite (a). The green patches denoted by A and B in
(a) were barren in 1994 as shown in the TM 432 RGB image (b) but then covered by healthy vegetation in 2000 shown in
red in the ETMþ 432 RGB image (c)
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Figure 21.9 Field photo taken in April 2006 on the road along theNujiang Valley. The picture shows the destruction of
vegetation coverage by road cutting and excessive cultivation

Figure 21.8 In the catchments of the Jinsha River, a few obvious red patches in a largely grey background in the
NDVI-D-RGI composite (a) reveal limited areas of severe vegetation destruction in an otherwise well-preserved region.
In the obvious red patches highlighted by (a), healthy vegetation shown in (b) the 1994 TM 432 RGB image has been
completely stripped, as confirmed by (c) the 2004 ETMþ 432 RGB image. The scattered subtle green spots on the slope
north of the obvious red patches in (a) imply weak revival of vegetation; the phenomena are reflected by increased
redness at the corresponding locations in (c) in comparison with (b)
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On the other hand, we realize that vegetation
destruction is much easier to detect than revival.
Most features of severe vegetation destruction are
the result of human activities (such as logging, burn-
ing and engineering), which can be produced in a
short period and with clear boundaries. In contrast,
vegetation revival is a long and gradual process, and
its features are subtle, scattered andmore sensitive to
seasonal effects. With these factors in mind, vegeta-
tion revival could be underestimated.

21.2 Landslide hazard assessment
in the three gorges area
of the Yangtze river using
ASTER imagery:
Wushan–Badong–Zogui

This case study presents a regional assessment of
landslide hazard in the Three Gorges area, China,
based on Terra-1 satellite ASTER image data,
including a stereo-image-derived DEM and multi-
spectral reflective and thermal imagery, in combi-
nation with field investigations.

A simple, multi-variable elimination and charac-
terization model, employing geometric mean and
Boolean decision rules, has been applied to a multi-
criterion image dataset to categorize the area into a
series of potential landslide hazard levels, which are
presented in map form (Liu et al., 2004; Fourniadis,
Liu and Mason, 2007a, 2007b).

21.2.1 Introduction

The Three Gorges Dam and reservoir project has
gained international attention, not only for its great
potential for hydroelectric power generation and
flood control, but also for its potentially harmful
effects on the environment and socio-economy. The
most significant and widespread natural hazard in
the region is slope instability. There are more than
2500 known localities of slope instability there.
With a significant increase and periodic fluctuation
of the pool level in the reservoir, the stability of
the huge shore area is a grave and unavoidable
problem. Slope instabilities already threaten several
new towns and the raising of the reservoir level has

the potential to reactivate old instabilities as well as
trigger new ones. Here we present an independent
study of terrain stability and landslide hazard as-
sessment in the Three Gorges area of the Yangtze,
using Terra-1 satellite ASTER imagery and a DEM,
in combination with field observations.

Landslide and slope instability can only be re-
garded as hazards when they have a negative impact
on human life and the environment, otherwise
these are part of the erosion process on the Earth’s
surface to flatten mountains and reform the land-
scape. In the Three Gorges area, populated regions
are often confined to low-lying areas on outcrops of
less resistant materials where soils are moremature,
which means that many villages and farms are sited
on unstable terrain. For this reason, our study is
focused on the populated regions along the Yangtze
in the Three Gorges area. We also consider the in-
teraction and balance between natural processes and
human activities, the disturbance of which is often a
trigger for landslides in this area.

We understand that the current development of
new towns and new settlements along theYangtze is
constrained bymany natural, economic and cultural
factors. We intend therefore to produce spatial in-
formation about relative levels of hazard, on the
basis of integrated digital datasets, which might
assist planners and decision makers in ensuring that
appropriate engineering measures are taken.

21.2.2 The study area

21.2.2.1 Geography
The Three Gorges have been formed by severe
incision of massive limestone mountains, of lower
Palaeozoic age and Mesozoic age (J1, Jialinjiang
Group), along narrow fault zones, in response to
Quaternary uplift (Chen et al., 1995; Zhao, 1996;
Li, Xie and Kuang, 2001; Huang, Xie and
Kuang, 2001). Between the gorges, the rocks are
much less resistant, consisting mainly of thinly
interbedded sandstones, shells and limestone, and
the valley is wider with less steep slopes than in the
gorges. River bank erosion, terrain dissection and
slope failures tend to be concentrated in these ‘inter-
gorge’ areas. Our study area includes the Wushan,
Badong and Zigui Counties, between the Wu and
Xiling Gorges (Figure 21.10). The annual average

334 PART THREE REMOTE SENSING APPLICATIONS



precipitation, in this part of China, in 2002 was
100–150mm per month and the spring–summer
(March–August) average can be as high as
200–300mm per month (http://www.dwd.de/
research/gpcc).

21.2.2.2 Geology
The basement of the study area is a crystalline, pre-
Sinian layer, with a supra-crustal Sinian–Jurassic
sedimentary cover (Wu et al., 2001). TheHuangling
anticline is amajor NNE–SSW-oriented structure in
the area, about 50 km in length, to the south-east of
Zigui, and its core is composed of pre-Sinian meta-
morphic and magmatic rocks (Figure 21.11). The
strength and stability of this anticlinal structure are
the principal reasons for the siting of the Three
Gorges Dam in its location, near Sandouping town
(about 60 km west of Yichang city).

There are threemain fault and fracture systems in
the area (Figure 21.11). Firstly, to the south-west of
the Huangling anticline is the NNW–SSE-oriented
Xiannushan fault, which consists of three, parallel
shear zones (Chen, 1986). Secondly, there is the
NNE–SSW-oriented Jiuxiwan fault, which inter-
sects the Xiannushan fault, near Zigui, and disap-
pears just to the south of it. Thirdly, the Zigui Basin
is crossed by the Niukou–Gongpiao fault zone,
which is of similar orientation to the Jiuxiwen fault.

In addition, the area to the south of Zigui and
Badong is characterized by a system of secondary
faults,which follow the orientation of the fold system
in the area, i.e. ENE–WSW (Wu et al., 1997). These
secondary fault and fracture systems tend to form
‘weak’ zones, which favour slope instability.

21.2.2.3 Land instability
Avariety of slope failure types occur in this region.
They include simple, rotational slumps in poorly or
unconsolidated materials, translational rock and
debris slides, debris flows and complex examples
involving more than one type of failure mecha-
nism and several types of material. As an example,
Figure 21.12 shows the massive rock block sliding
that happened on 13 July 2003 in Qian-jiang-ping,
Zigui County, blocking the Qinggan River, 3 km
from the river mouth discharging to the Yangtze
and just about 20 km upstream of the dam.

According to our field observations and pub-
lished articles in Chinese journals (China Yangtze
Three Gorges Project Development Corporation,
1999; Chinese Environment Agency, 2001; Three
Gorges dam and reservoir Project, 2002), the mas-
sive urban development required for the relocation
of major county towns to nearby higher positions
has already triggered several large landslides. For
instance, the Huangtupo landslide has forced the

Figure 21.10 Geographical setting of the study area. The Yangtze River traverses the area, flowing over the county
boundary from Wushan (west) to Badong and Zigui (east)
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new town of Badong County to be relocated about
6 km to the west in Xirangpo. A landslide, on
3 March 2002, moved more than 20 million cubic
metres of debris down the slope, threatening the new
town of Wushan County.

21.2.3 Methodology: multi-variable
elimination and characterization

As shown in Table 20.3, the relatively high spatial
resolution in the VNIR bands (with a pixel size of
15m), the high spectral resolution in the SWIR
andmulti-spectral TIR imagery and, importantly, the
along-track stereo capability make ASTER an ideal
data source for geological and geomorphological
interpretation (Welch et al., 1998; Yamaguchi
et al., 2001). Our investigation is based largely on
Terra-1 ASTER level 1B imagery acquired in May

2002and the two scenes,with a swath of60� 60km2

each,coverthewholestudyareafromWushanCounty
toBadongCountyandtoZiguiCounty(Figure21.13).

There are various approaches to the generation of
a landslide hazard map. Examples can be found in
Mason and Rosenbaum (2002), Mantovani et al.
(1996), Hartlen and Viberg (1988) and Varnes
(1984). The data available in this study do not allow
a detailed statistical assessment of the temporal and
spatial distribution of landslides in the study area
and therefore a semi-quantitative, logical elimina-
tion and characterization approach has been applied.
Our assessment model is based on the information
that can be extracted from the ASTER image data,
cartographic and survey materials, published litera-
ture and limited field observations.

The method can be broadly divided into three
parts: (i) parameter (relevant to slope instability)
selection and model configuration; (ii) model

Figure 21.11 Regional geological and tectonic framework map After Wu Shuren et al. (1997)
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Figure 21.12 A massive rock block landslide which occurred on 13 July 2003, in Qian-jiang-ping, Zigui County,
blocking the Qinggan River, 3 km from the rivermouth discharging into the Yangtze, and about 20 kmupstream from the
Three Gorges Dam

Figure 21.13 Two Terra-1 ASTER level 1B images and extent of study area (black rectangle)
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implementation: thematic information extraction
and multi-data layer generation; and (iii) landslide
hazard index computation and mapping.

21.2.3.1 Geometric mean model
configuration for landslide
susceptibility mapping

Ageneralmodel has been established on the basis of
simplified geology and geomorphology and field
knowledge of factors relevant to slope stability,
shown in Table 21.4. The geometric mean serves
to achieve multi-variable elimination and charac-
terization in the model for the susceptibility map-
ping of three major slope failures: block slide,
shallow debris slide and rockfall.

The geometric mean is defined as

GM ¼
Yn
i¼1

Pi

 !1
n

ð21:2Þ

where Pi is the quantization value for factor i.
The geometric mean, based on multiplication, is

fundamentally different from the WLC (Weighted
factors in Linear Combination) approach that
is based on an arithmetic mean. A simple WLC
resembles a parallel connection system, which

allows all members to survive from the beginning
to the end. The geometricmeanmethod represents a
sequential connection system, which terminates
whenever a zero value occurs, and is therefore
effective in eliminating irrelevant areas. For
instance, a zero value for a ‘flat’ area (where land-
slides are considered unlikely) will produce a geo-
metric mean of 0, regardless of the values of other
factors, and all ‘flat’ areas will be eliminated by the
system. The geometric mean is of a ‘harsh’ nature
and conceptually Boolean and, therefore, the
expected result is a discrete characterization rather
than a quantitative measure of regional hazard
levels.

The quantization level of a variable in this model
behaves like weighting in the WLC approach (see
also Section 18.5.5). A high quantization value will
make a variable more influential than the onewith a
low quantization value. For this reason, variables in
the model were rescaled to a value range represen-
tative of their importance. Each parameter is ranked
in no more than four levels, between 0 and 3. The
quantization in these simple levels enables the
geometric mean model to perform a logical elimi-
nation operation, while maintaining characteristic
numerical values for final assessment.

Table 21.4 Classification and quantification of landslide-related parameters for different landslide types (R, B and
D represent rockfall, block slide and shallow debris slide)

Parameter Class

Landslide types

R B D

Lithology Massive limestone 3 1 0
Sandstone and shale 1 3 1
Mudstone and debris 0 3 3

Slope angle Steep 3 3 1
Intermediate 1 2 3
Gentle 0 1 1

Dissection density High 2 2 2
Intermediate 1.5 1.5 1.5
Low 1 1 1

Distance from drainage Near 1 3 3
Distant 1 1 1

Distance from lineaments Near 2 2 1
Distant 1 1 1

Distance from lithological contacts Near 2 3 2
Distant 1 1 1
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The angular relationship between bedding atti-
tude of sedimentary rock formation, slope aspect and
slope angle is a very important factor in slope
stability (Meentemeyer and Moody, 2000; Wen
et al., 2004). For instance, a slope that is in the same
aspect as the rock beddings but has a steeper slope
angle than the dipping angle of the beddings is more
prone to landslide than a slope against the bedding
aspect. However, accurate data of this relationship
can only be collected fromdetailed field surveys.We
have to accept the limitation of a study based on
remote sensing imagery to exclude this parameter
from the model described above. Climatic data are
also not included because the limited study area
can be safely considered under the same climate.
Weather conditions are important for predicting the
temporal characteristics of the landslides in a high-
risk area; for instance, most landslides are triggered
by heavy rains. However, our research on the spatial
distribution of high-risk areas of landslide hazard is
aiming to answer the question of where the hazard is
likely to happen under similar weather conditions
rather than when.

21.2.3.2 WLC model for landslide hazard
assessment based on
susceptibility mapping

Landslide hazard can be defined as the probability
of occurrence of a landslide event of a given size,
and can be estimated as the product of susceptibility,
frequency and magnitude (Lee and Jones, 2004):

Hazard¼ Susceptibility�Frequency�Magnitude:

Thus, for the given three types of slope failures, the
total landslide hazard level for the study area can be
estimated as a linear combination of susceptibility,
frequency of occurrence and magnitude of these
types as follows:

HLandslide ¼HRþHBþHD ¼wRSRþwBSBþwDSD

ð21:3Þ
where H represents hazard index and S suscepti-
bility;w¼ Frequency�Magnitudeisweighting;and
R, B, D denote rockfall, block slide and debris slide.

The frequency and magnitude data of each type
of land instability have to be collected through
intensive fieldwork but this work can be made very

efficient when guided by the susceptibility maps
produced based on the geometric mean model from
remote sensing image data.

21.2.4 Terrestrial information extraction

21.2.4.1 Map of lithological stability
Lithology is one of the most relevant parameters
in landslide hazard. Different lithologies respond
differently to erosion agents and conduct mass
movement under differing natural conditions. For
the purpose of landslide hazard assessment, a sim-
ple lithologicalmap showing the broad categories of
rock types representing high, intermediate and low
competence is adequate. The essential information
of these three lithological units can be extracted
through enhancement and interpretation of the
ASTER multi-spectral imagery. A series of simple
colour composite images, enhanced using DDS
with the following band combinations, were used:

. Bands 3–2–1 RGB: (Figure 21.14a): This image
provides detailed information of textures relating
to topography, geomorphology and geological
structure and vegetation (see Table 20.3 for the
spectral ranges of ASTER image bands).

. Bands 4–6–9 RGB: (Figure 21.14b): In this im-
age, discrimination between the limestone– shale
units, and the interbedded pelites and psammites,
is clear.

. Bands 4–6–12RGB: (Figure 21.14c): This image
highlights sandstones because of the strong ther-
mal emissivity of quartz, revealed in band 12
(8.925–9.275 mm).

The lithological information derived from visual
interpretation of these three images, integrated with
information from the published small-scale geolog-
ical map, was the basis for mapping the three broad
lithological units with low, intermediate and high
competence as listed in Table 21.5 and shown in
Figure 21.15. In the ThreeGorges, different types of
slope failures and different degrees of landslide
susceptibility are associated with different litholo-
gies. Soft lithologies like Quaternary deposits and
mudstone may give rise to shallow debris slides,
while massive limestones tend to form stable ridges
and high peaks that can be subject to rockfalls.
Accordingly, the three lithological units were given
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different rankings for different types of slope
failures (Table 21.5).

The assignment of ranking values in Table 21.5 is
not intended to provide a precise quantitative esti-
mate of the rock stability based on a cardinal scale,

but to establish an ordinal ranking between classes
of lithologies in relation to the likelihood of partic-
ular slope failure. The ranking values for lithology
are 0, 1 and 3 instead of consecutive integers 0, 1 and
2. This is to emphasize the influence of the lithology

Figure 21.14 ASTER colour composite images for lithological mapping: (a) bands 3–2–1 in RGB; (b) bands 4–6–9 in
RGB; and (c) bands 4–6–12 in RGB

Table 21.5 Lithological competence classes and their stability ranking for rockfall (R), block slide (B) and shallow
debris slide (D)

Lithological classes Competence

Stability ranks

R B D

Massive limestone and dolomite High 3 0 0
Sandstones, thinly bedded limestone and shale Intermediate 1 3 1
Shale, mudstone and sandstone associations
and Quaternary deposits

Low 0 3 3
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in the geometric mean mode, which reflects our
field observation of the relationship between differ-
ent rock competence and type of slope failure.

21.2.4.2 Map of dissection density
Intensely dissected terrain contains many natural
pathways for surface runoff, which exacerbates
erosion along steep gullies, and is more vulnerable
to landslides than less dissected land surfaces. The
image representing dissection density is a measure
of ground surface textural complexity.As illustrated
in Figure 21.16 for the Badong area, a texture
density image can be derived through a simple and
effective sequence of edge enhancement (Laplacian
filtering), thresholding (Figure 21.16b) and smooth-
ing (Figure 21.16c). ASTER band 2 (red band) in
Figure 21.16a was chosen for this purpose because
of its 15m spatial resolution and minimal effect of

vegetation at thewavelength. The map of dissection
density (Figure 21.16d) is then produced from the
texture density image by thresholding based on the
natural breaks of its histogram corresponding to
broad classes of low, intermediate and high dissec-
tion density (Table 21.6). Here, instead of using
consecutive integer numbers, 1, 1.5 and 2 are used to
reduce slightly the significance of this parameter.
Figure 21.17 is the finally derived dissection density
map of the study area.

From Figure 21.17, it appears that urban devel-
opment (roads and buildings) increases the dissec-
tion density dramatically. This phenomenon has no
relationship with the dissection of natural land
surface but is relevant to the land stability assess-
ment because ‘human erosion’ activities have de-
stabilized those marginally balanced slopes and
triggered mobilization of old settled landslides. It

Figure 21.15 Lithological map of the study area classified on the basis of the competence of rock formations
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is reasonable to consider natural and anthropogenic
dissection together as one parameter for regional
assessment in this rapidly developing area.

21.2.4.3 Buffer map of distance from
faults and lineaments

Geological structures such as faults and fractures
form discontinuities in rock formations. On small

scales, such discontinuities contribute to the com-
plex textures. On a larger scale, neo-tectonic move-
ments, such as earthquakes, often produce ‘broken
zones’ along large fault segments in recent superfi-
cial deposits, and can be the trigger for landslides.
Theseweak zones present favourable conditions for
landslides (Saha,Gupta andArora, 2002).We there-
fore include major structural discontinuities, name-
ly faults and fractures, as a parameter in the analysis
of land stability. A map of faults and fractures
shown in Figure 21.18 was produced based on the
interpretation of ASTER imagery in combination
with published maps.

Field evidence suggests that lineaments of great-
er extent can have a greater influence on slope
instability than smaller features. The influence that
lineaments exert on slope instability was thus esti-
mated through the definition of buffer zones using a

Figure 21.16 Derivation of dissection density map. (a) ASTER band 2 image. (b) The texture image produced using a
Laplacian filter and thresholding to exclude negative values. (c) Smoothed texture image using a 7� 7 smoothing
kernel; the DN values in this image give a measure of texture density. (d) The dissection density map produced by
‘slicing’ thresholding of image (c): red, highly dissected; green, intermediate dissection; blue, least dissected

Table 21.6 Dissection density classes

Class
Dissection
density Values

Low texture density Low 1
Average texture density Intermediate 1.5
High texture density High 2
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distance function relating to lineament length. Two
classes of ‘Near’ and ‘Distant’ were then defined
(Table 21.7). Buffering creates vector polygons
around vector linear features at a specified distance;
the buffer polygons can then be converted into a
raster dataset for map overlay calculations.

21.2.4.4 Buffer map of distance from
lithological contacts

The inter-layering of formations of contrasting
physical properties, such as strength and perme-
ability, can lead to differential reaction to changes
in the environment, such as increase in pore-water
pressure and reduction of shear strength; this be-
haviour has been found to promote slope instability,
particularly of the translational block-sliding type
(Guzzetti et al., 2003).

In the Three Gorges, high terrain susceptibility to
block sliding was observed in stratigraphic contact
between limestone and mixed layers (mudstone,

sandstone and shale). In the case of mixed layers
overlying limestone, the limestone could provide
sliding surfaces for the overlying strata to slide
upon. In the case of limestone overlying mixed
layers, water may be concentrated in limestone due
to its high secondary permeability, whichmay result
in springs along the boundary of underlying clay-
rich impermeable lithologies; this condition satu-
rates the underlying softer layers and promotes
instability (Hutchinson, 1995).

The lithological stability map (Figure 21.15) was
used to delineate the contacts between lithologies of
contrasting physical properties. Mudstone, sand-
stone and shale formulate the ‘mixed layers’ cate-
gory, whereas the ‘limestone’ category comprises
both thinly bedded and massive formations. With
the contacts between groups of contrasting com-
petence identified, buffer zones 100m wide were
generated along these contacts to produce the map
shown in Figure 21.19 (see Table 21.8).

Figure 21.17 Dissection density map of the study area

CH21 RESEARCH CASE STUDIES 343



21.2.5 DEM and topographic information
extraction

A DEM with a spatial resolution of 45m was
generated from the ASTER images used in this
work. The DEM conforms to WGS84 datum and
UTM N49 projection. The essential topographical

information including slope angle and drainagewas
extracted from the DEM data.

21.2.5.1 Slope map
Slope angle and geometry are controlling factors in
slope stability in the Three Gorges Reservoir Re-
gion (Huang and Li, 1992; Wu et al., 2001), and a
digital slope image is therefore a fundamental part
of landslide hazard assessment. Slope angle was
extracted from the DEM, using a 3� 3 calculation
kernel based on the formula (4.15) in Part One of
this book;

tanG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qz
qx

� �2

þ qz
qy

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q

where G is the slope angle, qz the z elevation
increment, qx and qy are the horizontal increments

Figure 21.18 Major faults and lineaments used in the generation of the fault buffers, displayed over the ASTER
band 2 image

Table 21.7 Distances from faults and lineaments

Lineament buffer distance (m)

Lineament
length (m)

<2500 2500–5000 >5000

Near 0–100 0–200 0–500
Distant >100 >200 >500
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in column and line directions of the DEM. For
raster data, both qx and qy are equal to 1. Thus the
calculation kernel is

gx ¼ ð 0 � 1 1 Þ gy ¼
0

� 1

1

0
B@

1
CA:

Field evidence suggests that different lithologies
have different critical slope angles for slope failure.

A competent rock formation usually has a higher
critical slope angle than that for a soft lithological
formation. Field measurements were used to esti-
mate critical slope angles for different lithologies and
divide the slope map into lithology-controlled stabil-
ity classes (Table 21.9). That led to a classification
schemewhereby, for the same slope class in terms of
equivalent stability, instead of the same slope angle,
the threshold angle for a slope class varies depending
on the competence of the lithology. Slopes in mud-
stones and Quaternary deposits with angles below
5� are largely stable but become unstable when the
slope is greater than 15�. Slopes composed of
sandstone, shale and thinly bedded limestone are
largely stable below 15� slope angle and unstable
above 25�. Massive limestone, the most competent
lithology in the area, is usually not subject to slope
failure below 20�, although a slope angle above 35�

could be subject to rockfalls and topples. The slope
anglemapwas thus classified into relative categories
of ‘Gentle’, ‘Intermediate’ and ‘Steep’ slopes based
on the competence of the lithology (Figure 21.20).

Figure 21.19 Map of lithological contacts between formation of contrasting physical properties

Table 21.8 Distance from lithological contacts
classes

Distance from lithological
contacts (m)

Lithological
setting

Limestone over
mixed layers

Mixed layers
over
limestone

Near 0–100 0–100
Distant >100 >100
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21.2.5.2 Buffer map of distance
to drainage

Many of the large landslides in the Three Gorges
Region occur in close proximity to water courses.
The erosion process at the foot of the river banks
destabilizes the slope and leads to landslides. River
terraces (composed of alluvium, sand and gravels)
are also prone to collapse during heavy rainfall. The
distance from rivers is therefore considered an
important factor in characterizing slope stability.

In general, larger drainage channels can have a
greater influence upon slope instability than smaller
ones. This variation of influence of drainage
network to slope instability can be captured through
the distance buffer zones of different widths.

The drainage network of the study area was
automatically extracted from the DEM using
RiverTools software and then classified into three
broad categories: minor streams, tributaries to the
Yangtze and the Yangtze River itself for which

Table 21.9 Slope angle class intervals chosen by competence of lithology

Slope angle range (degrees)

Coverage (%)Class Limestone Sandstone Mudstone

Gentle 0–15 0–10 0–5 43
Intermediate 15–35 10–25 5–15 48
Steep >35 >25 >15 9

Figure 21.20 Map of slope angle classified on the basis of the competence of underlying lithology

346 PART THREE REMOTE SENSING APPLICATIONS



buffer distances of 100m, 200m and 500m were
assigned (Table 21.10). A buffer map of distance to
drainage was then produced (Figure 21.21).

21.2.6 Landslide hazard mapping

With six essential parameters represented as raster
image layers containing simple ranking numbers
for three different slope failure types specified in
Table 21.4, the geometricmeanswere calculated for
rockfall, block slide and shallow debris slide. The

values of the geometric mean for each slope failure
type were then classified into five classes, from
stable to high susceptibility, based on histogram
breaks, and thus maps of susceptibility to rockfalls,
block slides and shallow debris slides were pro-
duced. The spatial distribution of susceptibility is
different for the three failure modes. While steep
slopes in limestone mountains are more susceptible
to rockfalls (Figure 21.22), valley slopes formed
in sandstone and shale sequences appear to be prone
to block slides (Figure 21.23). In areas of soft

Table 21.10 Distance buffer from drainage network

Drainage network buffer distance (m)

Stream type Yangtze River Major tributaries Minor streams

Near 0–500 0–200 0–100
Distant >500 >200 >100

Figure 21.21 Drainage network extracted from the DEM and buffered at 100, 200 and 500m
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Figure 21.22 Susceptibility to rockfalls in Wushan–Badong–Zigui

Figure 21.23 Susceptibility to block slides in Wushan–Badong–Zigui
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lithologies, such as mudstone and Quaternary de-
posits, shallow debris slides are the dominant type
of land instability (Figure 21.24). The new town
areas of Wushan and Badong are subject to a high
risk of this type of landslide as the urban develop-
ment has to choose flat areas of soft lithology and
the engineering work, such as road cutting, intensi-
fied the dissection intensity of the land surface.

The three susceptibility maps were then com-
bined using the WLC model specified in formula
(21.3) to generate the final landslide hazard map
as shown in Figure 21.25. In the calculation of the
landslide hazard index, the weights for each map
in the WLC model are based on the qualitative
rating of frequency and magnitude of different
landslide types estimated from field observation
data and published landslide data as shown in
Table 21.11.

21.2.7 Summary

Despite the paucity of data and the simplicity of the
model based onASTER satellite imagery, this study

has shown convincing success in the delineation of
areas most susceptible to landslide hazard in the
Three Gorges Region according to our field inves-
tigation, collected data of known major landslides
and information of ongoing engineering work to fix
unstable slopes in the region. The results indicate
that the main areas of concern are connected very
closely to the recent relocation and development of
new towns in the Three Gorges Region.

The mathematical nature of the proposed land-
slide hazard index is effective in masking off the
stable areas; attention can thus be focused on the
areas subject to high levels of hazard and provides
effective guidance for further investigations and
recommendations for engineering measures.

This region is clearly subject to widespread
slope instability, irrespective of anthropogenic
influences, but recent construction activities have
triggered and reactivated several large landslides.
Reservoir flooding and the consequent raising of the
shoreline have the potential to change and rejuve-
nate slope profiles, and to trigger new landslides.
These in turn may affect reservoir capacity and
dam safety. This work of regional assessment of

Figure 21.24 Susceptibility to shallow debris slides in Wushan–Badong–Zigui
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landslide hazard highlights the most vulnerable
areas and the need for immediate and long-term
action plans to ensure that further developments
proceed within suitable engineering guidelines.

Thework has demonstrated that ASTER imagery
is a very useful source of topographic and spectral
information for regional landslide hazard mapping.
The 14 multi-spectral bands (in the VNIR, SWIR
and Thermal IR) of ASTER and its stereo capability
facilitate mapping and assessment of landslide haz-
ard on a regional scale and especiallywhere detailed
geological maps and topographic maps are not
available.

21.3 Predicting landslides using
fuzzy geohazard mapping;
an example from Piemonte,
North-west Italy

21.3.1 Introduction

This section describes the use of multi-form, digital
image data, within a GIS-based multi-criteria anal-
ysis model, for the regional assessment of risk
concerning slope instability (Mason et al., 1996;
Mason, Rosenbaum and Moore, 2000; Mason and

Figure 21.25 Landslide hazard map of Wushan–Badong–Zigui

Table 21.11 Qualitative rating of frequency and magnitude of the three types of slope failure in the Three
Gorges Region

Landslide type Frequency Rating Magnitude Rating Weighting

Rockfall Low 2 Medium 2 4
Block slide Medium 3 High 3 9
Shallow debris slide High 4 Low 1 4
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Rosenbaum, 2002). Landslides are documented
throughout the Piemonte region of NW Italy
but they are a significant problem in the area known
as the ‘Langhe’, a range of hills south-east of Turin
(Figure 21.26), where slope instabilities have been
experienced over a prolonged period. An exception-
al storm event in November 1994 produced exten-
sive flooding and widespread mass movements,
leading tomany fatalities and consequential damage
to property. The response to all natural disasters
demands an assessment of the hazard and some
prediction of the likelihood of future such events.
A recent and full National Landslide Inventory has
shown that more than 34 000 landslides affect the
Piemonte region in different geological contexts.
Recent research into the understanding and quanti-
fication of the problem in Piemonte has also includ-
ed the creation of a permanent scatterer system for
monitoring slopemovements using InSAR (Meisina
et al., 2008).

Satellite remote sensing enables rapid and routine
collection of data over a much greater area than
can be obtained from a typical ground-based survey
of comparable cost. In cases where landslides could
occur across a sizeable region, remote sensing may
be the only readily available source of information
concerning the terrain, particularly in the aftermath
of a devastating event or where erosion could rapidly
remove the evidence. Remote sensing can provide

information on the surface morphology (arcuate
scarp, hummocky ground, tension cracks and dis-
rupted drainage), changes in vegetation as a result
of increased water content, and soils which contain
a lot of water (i.e. are poorly drained). The remotely
sensed information is supported by field measure-
ments using reflectance spectroscopy and X-ray
diffraction (XRD)which provides direct information
concerning the local soil mineralogy. Oxidized iron
is an indicator of intense leaching and weathering
of iron-bearing rocks and gives a very distinctive
signature in remotely sensed imagery as well as
colour to soils. Intensely weathered and fractured
rocks are zones of inherent weakness that may indi-
cate locations where mass movement is likely to be
initiated. Clays and iron oxides have therefore been
employed as the two main soil mineralogical targets
within this investigation, to establish their associa-
tion with landslide occurrence with a view to deter-
mining their utility as geohazard indicators for mass
movement on a regional scale.

An important aspect of this study was, therefore,
to identify the temporal and spatial distribution
of areas liable to movement, including the location
of potential slip surfaces. This study considered the
geomorphological and mineralogical expressions
of mass movements, in addition to some enginee-
ring considerations, with a view to producing the
geohazard assessment.

Figure 21.26 (a) Map of western Europe, showing the location of Piemonte; and (b) the Langhe Hills in Piemonte, NW
Italy (the dashed line indicates the regional administrative boundary and the small bold box indicates the study area)
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21.3.2 The study area

The Langhe Hills of Piemonte (Figure 21.26) lie on
the flank of the southernmost arc of the western
Alps, on themargins of the plain of theRiver Po, and
comprise a series of gently dipping (7–12�) Tertiary
sediments of Oligocene (Aquitanian) age (about
26 million years). The gently north-westerly dip-
ping strata produce a series of NE–SW trending
asymmetric valleys with SE-facing, gently dipping
slopes and NW-facing steep scarp slopes.

Fine-grained argillaceous rocks, such as clays-
tone, mudstone, siltstone and shale, dominate this
region and usually occur as alternating sequences of
porous sandstones and impermeable mudrocks.
Stratigraphy of this nature is particularly prone to
differential weathering, swelling and erosion.

The area has also been isostatically active since
glacial times and the geomorphology of the upper
Langhe River basins suggests that the area has
undergone significant Quaternary uplift and rotation
(Biancotti, 1981; Embleton, 1984). This has caused a
marked change in drainage characteristics, including
river capture away from the Cuneo Plain north-east
into the Alessandria Plain (which is several hundred
metres lower).

21.3.2.1 History of slope instability
Major slope movements in the area have been
documented over the last hundred years or so,
by Sacco (1903), Boni (1941), Cortemiglia and
Terranova (1969), Govi (1974) and Tropeano
(1989). Govi and Sorzana (1982) were the first to
draw attention to the similarities between the
various landslides in the region, noting that a close
relationship existed between the timing of the
landslides and the period of antecedent rainfall.
They observed that some failures occurred on
slopes which had been affected by similar failures
in the past. They also inferred that human actions,
such as the construction of road cuts, terraces,
alteration of natural drainage systems and dump-
ing of waste into fissures, can be significant factors
for initiating slope instability.

One interesting aspect of this case is that the
Langhe experiences very heavy rain eachwinter, yet
the literature suggests a periodicity to major land-
slide events (with past events in 1941, 1948, 1972,
1974 and 1994). The map shown in Figure 21.27

illustrates the distribution of landslides produced
during the last three major landslide events. This
map suggests that much of the area has experienced
landsliding since 1972.

Between 4 and 6 November 1994, during a
severe cyclonic weather event, several hundred
millimetres of rain fell on Piemonte. Many of the
slope movements began with the ground cracking
and bulging, but the main displacements did not
start until aroundmidnight on the 5th, coming to rest
in the early hours of Sunday, the 6th. The average
rainfall during each day of the 1994 storm was
33mm, contrasting with the average monthly rain-
fall of around 140mm for November in Piemonte
(Polloni et al., 1996). In fact, between 200 and
300mm of rain fell between 2 and 6 November,
with 90% of this falling on the 5th. On the 6th, the
region received the greatest recorded rainfall in 80
years (up to 25mm/hour).

Groundwater storage capacities of the river
basins were exceeded and the water table reached
surface levels; subsequently rainfall could only
escape by flowing overland, causing widespread
flooding. In total, 70 people were killed, several
thousand people were rendered homeless, 200
settlements (towns and villages) were affected
and over 100 bridges were damaged or destroyed.
The total damage was estimated at approximately
US $10 billion, within an area comprising about
30% of the region (Polloni et al., 1996).

21.3.2.2 Slope movement types and
geotechnical considerations

Two broad types of failures are observed in the
region: debris flows and block slides (single surface
and compound, and both first-time and reactivated).
These are illustrated in Figure 21.28 and their
characteristics described in Table 21.12.

Previous research (Bandis et al., 1996; Polloni
et al., 1996; Forlati et al., 1996) indicated a number
of conditioning factors and situations. From their
results the following conditions have been identi-
fied as being significant in triggering slope failures
in this case:

. The rocks and soils are in a severely weakened
state at the time of failure.

. Antecedent rainfall was critical in the initiation of
debris flows.
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Figure 21.27 Some of the previous block-slide event localities in the Langhe region

Figure 21.28 Slope movement types observed in the area
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. The most frequent slope gradients where failures
occurred were between 30� and 40� for debris
flows and between 10� and 15� for block slides.

. The position of the groundwater level (relative to
ground level) and rainfall intensity are critical to
slope stability; if these are both high, then slopes
may become unstable even at very low slope
gradients.

. The slope failure planes (in block slides) are
pervasive, between 100 and 200m in length and
occur at clay-rich layers.

. Failure plane layers contain high contents of the
swelling clay, smectite (montmorillonite).

Work by Bandis et al. (1996) also yielded valu-
able geotechnical parameters for the rocks and soils
in this region which were used in preparing the data
for the hazard assessment.

21.3.3 A holistic GIS-based approach
to landslide hazard assessment

21.3.3.1 The source data
Adigital image databasewas compiled for thiswork
from a number of sources. It included a DEM,

created photogrammetrically from ASTER imag-
ery, from which slope angle (degrees) and slope
aspect (degrees, as a bearing from north) were
calculated. Geological boundaries, drainage and
infrastructure were digitized from paper maps of
1 : 25 000 and 1 : 50 000 scales. Multi-temporal
SPOT Panchromatic and Landsat TM image data
were used to locate known landslides produced by
the 1994 storm event and to derive rock, soil and
land-use information.

21.3.3.2 Selection and data preparation
A number of significant criteria were identified, on
the basis of direct field observation and published
work:

1. Slope morphology: Surface parameters, slope
gradient and aspect were calculated from the
DEM. Fuzzy functions were used to normalize
these criteria to a common scale, using control
points derived from field evidence.

2. Field evidence suggests that block slides occur
frequently in close proximity to roads and that
debris flows tend to be channelled by first- and
second-order stream–valley morphology. Two
criteria images were generated to represent the

Table 21.12 Characteristics of slope movement types

Type Debris flows Block slides

Movement mechanism Shallow sheet flows (and
some slides)

Translational simple and compound block
slides

Slopes 20–53� (generally 20–40�) 5–15�
Attitude At high angles to bedding At low angles to bedding
Width/length aspect ratio 0.05–0.3 0.3–0.5
Depth about <1.5m 1–10m (simple), 20–30m (compound)
Material involved Top soil/regolith and

vegetation
Rock, soil and vegetation

Other characteristics Commonly related to slope
concavities, drainage
gullies and hollows;
commonly in wooded areas

Incipient phase marked by ground
swelling; open fractures and tension
gashes above the crown prior to failure

Timing and rates Occur after major rainfall
events. Rapid movement (a
few metres per second)

Variable movement rates (between 10 and
100m/h)

Nature Highly destructive Large area of the ground unbroken (simple
slides); considerable disruption to the
ground surface (compound slides)
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Euclidean distance from roads and from drain-
age features, using information extracted from
satellite images and published maps.

3. Geotechnical measures: Both block slides and
debris flows in the Langhe are planar failures,
and as such can be treated as ‘infinite slopes’ at
such a regional scale of assessment (Taylor,
1948; Skempton and DeLory, 1957; Brass,
Wadge and Reading, 1991). The lack of pore
pressure and shear strength information, and
observations that these slope failures include
both rock and soil, permit such a simplified
approach rather than attempting to apply a more
rigorous application of limit equilibrium meth-
ods. Aversion of this model was used to produce
a ‘factor of safety’ image layer as follows:

F ¼ shear strength

shear stress
¼ c0 þ ðg�mgwÞzcos2a tanf0

g z sina cosa

ð21:4Þ
where c0 (effective cohesion)¼ 0.005 kN/m2

(c0res ¼ 0 kN/m2), g (bulk unit weight)¼ 24 kN/
m3, m (ratio of water table depth to failure
surface depth)¼ 1.0, gw (unit weight of water)
10 kN/m3, z¼ depth to failure surface,a¼ slope
angle and f0 ¼ effective friction angle.
The infinite slope equation was calculated

directly, on a pixel-by-pixel basis, using the slope
gradient and aspect images. The other parameters
were interpolated from results presented by Ban-
dis et al. (1996). Based on field evidence, clearly
defined ranges in slope aspect could be defined
for the block slides (240� 020�) and debris flows
(020� 240�).Again on field evidence,maximum
block thickness (z) was taken as 10m for block
slides and 3m for debris flows. For the materials
occurring on low-angle dip slopes, friction angle
was assigned a residual value of 10� (character-
istic of marls) and for materials on scarp slopes
the anglewas assigned to be 25� (characteristic of
sandstones). Cohesionwas taken as 0.004 kN/m2,
an average based on laboratory test results
for the marl and mudstones on dip slopes, and
5 kN/m2 for sandstones on scarp slopes (Bandis
et al., 1996). Eyewitness accounts indicate that a
state of steady seepage occurred at surface level
for some time after failure, so the ‘ratio of
water table depth to failure surface’ or m can be

assumed to equal 1.0. ‘Map algebra’ was then
used to calculate the infinite slope equation to
generate a factor of safety (f) map, using the
following ‘map algebra’ expression, as con-
structed in ER Mapper’s formula editor:

if i1>0 and i1 < 20 or i1>240 and i1 < 360 then
ð0:004þð24� 1*10Þ*ð10*ðcosði1*ðpi=180ÞÞ
*cosði1*ðpi=180ÞÞÞ*tanð10*ðpi=180ÞÞÞÞ=

ð24*10*sinði2*ðpi=180ÞÞ
*cosði2*ðpi=180ÞÞÞ else
if i1>20 and i1 < 240 then

ð5þð24� 1*10Þ*ð3*ðcosði2*ðpi=180ÞÞ
*cosði2*ðpi=180ÞÞÞ*tanð25*ðpi=180ÞÞÞÞ=

ð24*10*sinði2*ðpi=180ÞÞ
*cosði2*ðpi=180ÞÞÞ else null

where i1¼ pixel values in the slope aspect
image, i2¼ pixel values in the slope angle image,
and null¼ pixels representing areas not at risk to
failure and therefore excluded from the proces-
sing algorithm (no value).

4. Clay content and leached zones: Image ratios
were derived from Landsat TM data to create
two indices revealing selected ground character-
istics: (i) iron oxide content, fromTMbands 3/1;
and (ii) hydrated mineral (including clay) con-
tent, from TM bands 5/7. The distribution of
iron-oxide-rich areas of soil is included in the
analysis as an indirect indication of the presence
of highly fractured zones (where iron is prefer-
entially leached from the rocks and soils around)
and therefore of potential instability. The tas-
selled cap transform was used to produce a soil
wetness index. This transform, used to derive
indices such as ‘Brightness’, ‘Greenness, and
‘Wetness’ from remotely sensed images, was
developed by Crist and Cicone (1984a,
1984b). These three image-derived indices pro-
vide information about leaching and fracturing
of the ground (iron oxide), the water-retentive
properties of the soils (hydratedmineral and clay
content) and soil moisture (wetness), which
could then be used as evidence in the GIS
geohazard assessment of conditions leading to
instability.
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21.3.3.3 Multi-criteria evaluation
The model used here is based on the analytical
hierarchy process described in Section 18.5.5, where
there are both factors and constraints input to the
model.The factorshavebeenpreparedusingavariety
of fuzzymembership functions and their significance
wasevaluatedusing apairwisecomparisonmatrix, as
shown in Table 21.13. The factor weighting coeffi-
cients are then calculated using themethoddescribed
in Section 18.4.3. For the purpose of illustration, we
shall deal only with block-slides here.

The parameters controlling the fuzzy member-
ship thresholds were selected on the basis of field

observation and published work, as described
previously. These control points and the function
types and forms used here are summarized in Ta-
bles 21.13 and 21.14.

21.3.3.4 Hazard and risk maps
The probability of occurrence of both spatial and
temporal events needs to be determined with re-
spect to the mass movement hazard. Varnes (1984)
defines a hazard as being the probability of occur-
rence of a potentially damaging phenomenonwithin
a given time and in a given area, and so we use the

Table 21.13 Pairwise comparison matrix for factors influencing block-slide hazard

Factors Slope Aspect FS Rddist Drdist Wet Fe Clay

Slope 1 1 1 1/3 1/5 1/2 1 1/4
Aspect 1 1 1 1/3 1/9 1 1/3 1/5
FS 1 1 1 1/3 1/7 1/3 1/3 1/8
Rddist 3 3 3 1 1 3 3 1
Drdist 5 9 7 1 1 3 3 3
Wet 2 1 3 1/3 1/3 1 1/2 1/6
Fe 1 3 3 1/3 1/3 2 1 1/3
Clay 4 5 8 1 1/3 6 3 1
Factor weights 0.052 0.045 0.039 0.187 0.292 0.070 0.089 0.226

1Slope¼ gradient; FS¼ factor of safety; Rddist¼ distance from roads; Drdist¼ distance from drainage; Wet¼
wetness index; Fe¼ iron oxide index; and Clay¼ hydrated mineral index.

Table 21.14 Fuzzy membership functions used to prepare input criteria for block-slide hazard

Factors Function type Function shape Control Point Values

Slope gradient Sigmoidal Monotonic decreasing 0, 4, 15, 20

Slope aspect Sigmoidal Symmetric 20, 40, 220, 260

Factor of safety Linear Monotonic decreasing 0, 1

Distance from roads Sigmoidal Monotonic decreasing 200, 1000

Distance from drainage Sigmoidal Monotonic decreasing 150, 300

Wetness Sigmoidal Monotonic increasing 80, 180

Iron-oxides Sigmoidal Monotonic increasing 50, 150

Hydrated minerals Sigmoidal Monotonic increasing 70, 200
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relationship between hazard, risk and vulnerability
described in Section 17.4.

As stated in Section 17.2, decisions concerning
the hazard being considered can be computed with-
in GIS by employing rules based on logic. Where
data values have been measured directly, ‘hard’
decision rules can be formulated. This is difficult
to achieve in reality and generally ‘soft’ decisions
have to be established on the basis of experience,
prior knowledge and judgement; in other words,
‘belief’ in the possible outcomes.

Uncertainty in this case describes both the natural
variability of the data and the lack of evidence about
the significance of the data. This can be extended to
consider whether a slope could become unstable as
a result of an adverse combination of parameters.

The hazard map for block slides is shown in.
Much of the area has probability values exceeding
0.05, and the NW-facing slopes generally show

values greater than 0.10. Comparison between dis-
tributions of block slides in 1972, 1974 and 1994
(shown in Figure 21.29) reveals coincidence with
many areas of highest hazard.

A map of relative vulnerability can be deduced
through reclassification of the attributes to derive
generalized land-use classes, and assigning them
values between 0 and 1 as measures of their relative
cost value (with 1 representing the highest vulnera-
bility). The hazard maps for block slides and debris
flows can then be multiplied by the vulnerability
map to produce landslide risk maps, as shown in
Figure 21.30.

21.3.4 Summary

The study of slope stability and geohazard assess-
ment has attracted a great deal of attention as concern

Figure 21.29 Block-slide hazard map, representing probability of occurrence, as a worst case scenario
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has grown for the safety of urban development
encroaching on upland areas. Landslides in this area
generally involve translational sliding and so the
application of the infinite slope method proved an
acceptablemodel for this study. The results show that
planar failures are more likely to occur on the NW-
facing dip slopes, but that if the soil/rock interface is
taken as a potential discontinuity, planar failuresmay
also occur on scarp slopes.

Comparison of the hazardmaps generated byGIS
with the distribution of known landslide events has
revealedthegeneralapplicabilityofthemethodology.
It isacknowledged,however, that thedatabaseusedin
this work is incomplete and contains errors, and that
work in this area has continued (Luino, 1999; Godio
and Bottino, 2001; Guzzetti, 2000; Canuti et al.,
2004; Meisina et al., 2008). Furthermore the planar,
infinite slope model is known to be a simplifica-
tion of the actual failure mechanisms operating but
thegeohazardmapcomputed in thismanner seems to

reflect reasonably the observed occurrences of land-
slides in the Langhe region.

Image information relating to landslides is com-
plex and contains two important components: tex-
ture and spectral detail. Remote sensing has been
widely and successfully used to detect landslides
in the past (Murphy and Vita-Finzi, 1991; Rengers,
Soeters and Van Weston, 1992; Murphy and
Bulmer, 1994). It also provides a very convenient
source of time-dependant information.

Geomorphological studies indicate that the
Langhe region is still dynamic in terms of post-
Alpine, post-glacial crustal uplift and that the mass
movements are an ongoing natural, slope-dynamic
consequence of this uplift. Recent research also
points to a close link between slope instability in the
Alps and periodicity in theHolocene climate (Canuti
et al., 2004). This implies that landsliding in the
region is a long-standingphenomenonand is likely to
remain so. Such situations are not uncommon, so the

Figure 21.30 Block-slide risk map, representing percentage risk (under the same conditions as above) according to
the relative value of land and property in the area
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continuing development and exploitation of new
technologies to help understand and mitigate the
effects of such geohazards are vitally important.

The hypothesis that incorporation of digital
information within geohazard assessment utilizing
GIS can significantly improve risk management in
areas such as the Langhe has been considered for:

. compilation of thematic information from remote
sensing, geomorphology (elevation and its deri-
vatives) and land usage;

. stability analysis of selected slope profiles and of
the whole study area;

. multi-criteria hazard assessment (using probabil-
ity and decision support tools) to compute geo-
hazard maps.

It can be concluded that for image-based studies
utilizing satellite data, the most significant infor-
mation is morphological since it is these features
that are detectable using the sensor. There are
certain important features that are needed for the
correct identification of mass movements, for ex-
ample arcuate scarp, tension cracks and hummocky
displaced ground. Detection of such features in
imagery is helped by prior knowledge of the likely
mechanisms and the prevailing state of activity.

GIS provides a flexible and effective tool for
slope stability assessment and the production of
thematic maps. The multi-criteria approach pro-
vides a practical means for aggregating significant
attributes (factors) influencing slope instability and
also provides a flexible means of combining indi-
vidual factors reflecting their relative influence on
the system controlling the outcome.

21.4 Land surface change detection
in a desert area in Algeria
using multi-temporal ERS
SAR coherence images

As indicated in Chapter 10, multi-temporal SAR
interferometric coherence imagery is a useful infor-
mation source for the detection of randomchanges of
the land surface. In this case study, three coherence
images derived from three ERS-1 SAR images of an
arid area of the Sahara Desert in Algeria revealed
some interesting phenomena, including distribution

of mobile sand, erosion along river channels, varia-
tion of ephemeral lakes, and seismic survey lines.

21.4.1 The study area

The area chosen for study is in eastern Algeria near
the border with Libya in North Africa, 100� 100
km2, at approximately 27–28�N and 8–9�E. The
Atlas Mountains separate the warm and temperate
region along the coast of the Mediterranean from
the vast hot arid desert: the Sahara. With very low
humidity levels from 5 to 25%, rainfall is rare, solar
radiation is intensive and the diurnal variation of
temperature is large in the region (Ahrens, 1994).

The very low precipitation and excessive evapora-
tion make the desert hyper-dry, barren and almost
completely devoid of surface vegetative cover. This
absence of a binding agent allows the loose sand or
topsoil to migrate according to the prevailing wind
patterns. It has been observed that the desert in this
regionisexpandingnorthwards,withthevegetationof
marginal lands being stripped for firewood or animal
fodder, further exposing fragile soils to erosion.

As shown in a colour composite of a Landsat TM
image (Figure 21.31), the main geographic features
of the study area are large expanses of flat bare rock
or gravel plains broken up by escarpments, gully

Figure 21.31 Study area: Landsat TM colour composite
of bands 4, 2 and 1 in RGB (10 February 1987)
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networks and ephemeral drainage channels, some of
which flow into lakes or depressions. Large parts of
the region are covered with seas of sand, with linear,
barchanoid and star dune types present, as well as
thin sand sheets.

21.4.2 Coherence image processing
and evaluation

Three scenes of ERS-1 SAR raw data of the study
area acquired on 8 September 1992, 13 October
1992 and 28 September 1993 were processed by
an SAR processor to produce single look complex
(SLC) images. We name the three scenes in time
sequence as Alg1, Alg2 and Alg3. Among the
three SLC images, Alg2 was used as the master
scenewhileAlg1 andAlg3were used as slave scenes
to be co-registered to the master. Three coherence
images with 35, 350 and 385 days of temporal
separation were thus produced using formula
(10.23) and named as Coh12, Coh23 and Coh13.

There are several decorrelation factors that cause
the loss of coherence in multi-temporal coherence
imagery (Zebker and Villasenor, 1992; Gens and
van Genderen, 1996). Besides the temporal change
of the land surface, which is the target of the study,
the major factors reducing coherence level are the
baseline distance and the local slope.

Decorrelation caused by baseline separation is an
inherent factor of the multi-pass, multi-temporal
interferometric SAR system. The component of
baseline perpendicular to radar look direction (B?)
represents the difference inview angles for the same
ground target between the two observations. The

phase of a radar return signal is decided by the
vector summation of all the scatterers within a
ground resolution cell. If B? is significant, the radar
beam will illuminate the same ground target at
considerably different angle and the collective ef-
fects of the relevant scatterers will result in a certain
degree of random variation of phase. Thus the
coherence decreases with the increase of B? as
characterized in the formula (10.24) in Chapter
10 and thus a short B? is generally preferred for
coherence-based random change detection.

We can calculate the theoretical coherence values
of the three coherence images from formula (10.24)
using the nominal parameters of the ERS-1 SAR
system. These data together with the actual average
coherence values of the whole scene, a high coher-
ence flat area and a gully-dissected area are shown
in Table 21.15. The theoretical coherence value de-
clines steadily with the increase of B?. The average
coherence for the whole scene is much lower
than the theoretical value for all the three coherence
images because of very low coherence resulting
from temporal decorrelation in the large areas cov-
ered by mobile sand. It is interesting to notice that
the average coherence over the gully-dissected area
forCoh23 is higher than that for the full scene and it
is significantly higher than those for Coh12 and
Coh13 which are lower than their corresponding
full-scene averages.

For further analysis, the ratios between the actual
and the theoretical coherence values were calculat-
ed (Table 21.15). The ratio data give an evaluation
of the relationships amongB?, local slope, temporal
changes and coherence level. For the full scene, the
ractual/rtheory ratio declines with the increase of

Table 21.15 Coherence data of the three coherence images of the study area
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temporal separation because the random changes of
land surface accumulatewith time. In the gully area,
however, the value of ractual/rtheory increases signif-
icantly between Coh12 and Coh23 when B? de-
creases from 263 to 105m. This is due to the spatial
decorrelation effect on directly radar-facing slopes
(Lee and Liu, 1999). For the same reason, the ractual/
rtheory ratio decreases gently with the increase ofB?
in the flat stable area.

FromTable 21.15, it is obvious thatCoh13 has the
poorest quality of coherence because of the largest
B? among the three coherence images, and it covers
the repeated temporal range of Coh12 and Coh23.
Therefore, Coh13 is only used when necessary in
the following interpretation for change detection.

21.4.3 Image visualization and interpretation
for change detection

21.4.3.1 Principles of interpretation
The study area has a very stable environment. The
possible factors causing random changes of land
surface are sand movement, erosion and deposition
caused by wind or occasional flash flooding and
limited human activities mainly relating to oil ex-
ploration. These changes will cause the decrease
and loss of coherence and form dark features
remarkably obvious against the high-coherence
background of a stable barren land surface. With
three images taken with 35 and 350 and 385 days

of temporal separation, simple logical analysis is
effective for interpreting the nature of the changes.
Typically, there are six possible scenarios between
Coh12 and Coh23, as shown in Table 21.16.

21.4.3.2 Sand movement (Boxes 1 and 3
in Figure 21.31)

Several types of sand dunes are present in the area,
including transverse barchan and linear types, and
star dune networks. These are generally evident
on TM imagery (Figure 21.32), which shows the
morphology and structure of individual dune
features. However, to define the boundaries of a
dune or dune field and to identify thin sheets of
mobile sand are not always possible using TM or
other types of optical imagery, particularlywhen the
spectral properties of sand are very similar to the
solid basement, as shown in Figure 21.32a. SAR
amplitude imagery is even less adequate for the
task, as shown in Figure 21.32b, because the tone
variation of the image is relevant to surface rough-
ness rather than spectral or dynamic properties.

In contrast, based on quite different principles,
coherence imagery is very effective for dune bound-
ary delineation and mobile sand sheet identifica-
tion, thus enabling a critical assessment of dune
movement and sand encroachment. The loose
sand grains on dune surfaces or thin sand sheets on
a solid basement plain are subject to continuous
movement under the wind even though the dune is

Table 21.16 Coherence scenarios and logical interpretations

Scenario

Coherence level

Interpretation

Coh12 (35 d)
8 Sept. to
13 Oct. 1992

Coh23 (350 d)
13 Oct. 1992 to
28 Sept. 1993

1 High High Stable, no change.
2 High Low Stable, then substantial change after 13 Oct.

1992
3 Low High Sudden changewithin the first 35 d then stable in

the following 350 d
4 Low Low Continual substantial change over whole period.

Or sudden change in 35 d followed by
substantial change in 350 d

5 Medium High Slight change until 13 Oct. 1992 and then stable
6 Medium Low Slow and progressive change over whole period
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static as a whole. The sand movement causes
random changes in themicro-geometry of scatterers
on the sand-covered land surfaces and thus results in
a loss of coherence over a very short period as
characterized by scenario 4 in Table 21.16. The
very dark decoherence features of mobile sand over
a bright high-coherence background are not only
direct evidence of sandmobility, but also effectively
delineate the outlines of active dunes and optically
indiscernible thin sand sheets. These data are not
easily obtainable over a large region using other
Earth observation techniques.

As illustrated in Figure 21.32c, complex bound-
aries of three chains of dunes (barchan and linear
types) in the region are sharply defined in the
Coh12 image as decoherence patches over a
high-coherence background. The boundaries are
distinctive and definite. With 350-day temporal
separation, Coh23 (Figure 21.32d) reveals a thin
sheet of mobile sand spreading into the inter-dune
areas making the whole dune field a nearly contin-
uous decoherence patch. The central part of the
dune field is typically characterized by scenario 6 in
Table 21.16 asmedium coherence inCoh12 and low
coherence inCoh23 indicating continuous transport
of the sand sheet as it is swept over the barren land
surface.

The dune positions are defined effectively in the
coherence images of 35, 350 and 385 days of
temporal separation. A colour composite of the
three coherence images may reveal possible dune
migration, which occurred during the 385-day pe-
riod. For a colour composite ofCoh12 in red,Coh23
in green and Coh13 in blue, a quickly migrating

barchan dune would be presented as a dark deco-
herence feature with a narrow trailing edge in red
and awindward edge in green (Liu et al., 1997a). As
illustrated in Figure 21.33b, this diagnostic pattern
is not evident, a discovery not unexpected for the
following reasons:

. The large formations approximately 1 km wide
are static as a whole. These large formations
consist of small barchanoid ridges 50m wide,
which themselves are likely to be migrating fea-
tures, but the migration cannot be detected in the
largely decoherent background of the large sand
formations.

. Even dunes migrating rapidly at 20m per year
would not produce a substantial signal on the
images of 35- and 350-day intervals, at a coarse
pixel resolution of around 30m.

In order to make a serious attempt to identify
dune migration, coherence imagery with a much
longer temporal separation is required.

21.4.3.3 Ephemeral lakes and water bodies
(Box 4 in Figure 21.31)

The RGB colour composite of coherence images is
an effective aid for the logical analysis of various
events of land surface changes. The area defined by
the box in the coherence colour composite of
Figure 21.34a presents an obvious red patch. It
appears to correspond strongly with a bright cyan
feature on the TM 421 colour composite
(Figure 21.34d), which is defined as a shallow
ephemeral lake in a reference map of the area

Figure 21.32 Dune boundary definition and mobile sand detection: (a) colour composite of Landsat TM band 421 in
RGB (box 1 in Figure 21.31); (b)multi-look amplitude image ofAlg1 scene; (c) Coh12, the coherence image of 35 days of
separation; and (d) Coh23, the coherence image of 350 days of separation
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(DMAAC, 1981). The analysis of TM multi-
spectral information indicates that the lake was
nearly dry when the TM image was taken on 10
February 1987 (there was no precipitation in Janu-
ary and February 1987 according to the data from
the GPCC website). As shown in Figure 21.34e and
f, the lake patch is not particularly dark in the NIR
band TM4 and very bright in the thermal band TM6.
This characteristic is contradictory to the typical
water spectral signature: strong absorption in TM4.
The area in fact presents an unusual spectral prop-
erty: high albedo and high thermal emission. In
general cases, high-albedo objects would have low
thermal emission (Liu, Moore and Haigh, 1997b).
The exceptional cases may occur for crystallized
transparent material with strong internal scattering
such as snow, gypsum and salt. It is reasonable to
presume that this dried saline lake basin is covered
with salt deposits.

The red pixels in Figure 21.34a are those coherent
in Coh12 (Figure 21.34b), but not in Coh23
(Figure 21.34c), logically implying a slow-chang-
ing environment that appears relatively stable in the
short term (35 days) but the accumulated progres-
sive change is substantial over amuch longer period
(350 days). It is therefore suggested that the lake

basin was dry during the initial 35 days with a
relatively stable surface. This condition allows me-
dium to high coherence in Coh12. Then, in the
following 350 days, the lake possibly experienced
recharges of floodwater, temperature variation over
a considerable range and repeated salt mineral
crystallization due to the water-level change. Any
of these processes can produce random changes
significant enough to result in decoherence in
Coh23. This explanation is supported by monthly
average precipitation data (Rudolf et al., 1994;
GPCC 1992–1993) of the area during the period
as shown in Figure 21.35. There were 6–10mm of
precipitation in winter 1992 and 5–6mm in autumn
1993, which is adequate to cause seasonal recharge
to the lake.

Numerous similar patchy features can be
identified in this region using the same logic and
methodology, which correspond well with ephem-
eral lakes in the TM421 RGB colour composite
(Figure 21.34d). Obviously, a confident identifi-
cation of these desert lakes cannot be achieved
without the TM colour composite. The extra con-
tribution of the SAR multi-temporal coherence
image is the detection of the dynamic activities
of these lakes.

Figure 21.33 Dune migration: (a) colour composite of Landsat TM bands 421 in RGB (box 3 in Figure 21.31);
(b) colour composite of Coh12, Coh23 and Coh13 in RGB; a migrating barchan dune would be presented as a dark
decoherence feature with a narrow trailing edge in red and windward edge in green. Note that this diagnostic feature
does not appear in the image
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21.4.3.4 Drainage pattern and erosion
(Box 2 in Figure 21.31)

Though the dominant agent of erosion in the
Sahara Desert is the prevailing wind, occasional

and isolated intense rainstorms can cause local
flooding and rapid fluvial erosion/deposition.
Multi-temporal coherence imagery can provide
direct evidence of this process. As there is an acute

Figure 21.34 The spectral and coherence properties of an ephemeral lake. (a) Colour composite of Coh12, Coh23 and
Coh13 in RGB. The rectangular box indicates an area with progressive decreasing of coherence which is better shown by
comparison between (b) the Coh12 image and (c) the Coh23 image where the patch is becoming darker. (d) Colour
composite of Landsat TM bands 421 in RGB (box 4 in Figure 21.31) indicates that the feature is in cyan colour and likely a
water body; however, lack ofwater absorption in (e) the TMband 4 image and strong thermal emission in (f) the TMband
6 image indicates there was no water when the image was taken

Figure 21.35 Averagemonthly precipitation from September 1992 to September 1993 for the study area in the Sahara
(E7–9�, N27–28�). Data compiled from Global Precipitation Climatology Centre: http://www.dwd.de/research/gpcc
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lack of information on the spatial location and
temporal frequency of such erosion/deposition
events, coherence imagery represents a valuable
potential source of such data.

As shown in Figure 21.36a, the coherence im-
age Coh12 illustrates an area with high coherence
over the initial 35-day period. There are no
obvious water channel features except for a
small section of channel approximately 30m wide
in the bottom-right corner of the image with
low coherence. The subsequent Coh23 image
(Figure 21.36b), on the other hand, exhibits two
separate major channels as obvious decoherence
features in a bright background of high coher-
ence. These features are very eminent from the east
and gradually become less pronounced further
downstream towards the west. This characteristic
reflects localized flooding from isolated storms,
coupled with high transmission losses and evapo-
ration causing surface flow to diminish down-
stream. As shown in Figure 21.35, there was no
precipitation during September and October 1992.
We can therefore assume that the channels
were dry and stable in the initial 35 days. In the
subsequent 350 days, there were 6–10mm of
precipitation in winter 1992 and 5–6mm in autumn
1993. These rainfall events could have caused sea-
sonal flash floods in the rivers and resulted in active
erosion/deposition resulting in loss of coherence in
the Coh23 image.

21.4.3.5 Geophysical survey lines (Box 5 in
Figure 21.31)

We have alluded to this unexpected finding in
Chapter 10. As presented in Figure 10.8, the coher-
ence image Coh23 observed between 13 October
1992 and 28 September 1993 reveals a mesh of
straight lines which are not present in the relevant
SAR multi-look images. These lines are clearly
visible over this approximately 40� 40 km2 area,
with single lines up to 40 km long at a spacing of 2 to
3 km. Obviously, these are the results of anthropo-
genic disturbance over the periods between the
repeated SAR image acquisitions. It is known that
Sonatrach, the national oil company of Algeria,
operated in the area during the period; the coherence
image Coh23 exposed considerable details of
seismic survey.

A seismic survey line will result in decorrela-
tion between the SAR images taken before and
after the survey as long as the swath is equivalent
to or wider than the SAR image resolution cell and
the random disturbance caused by engineering
work is greater than half a wavelength of the radar
beam (2.83 cm) in its slant range direction. The
features are therefore detectable using the coher-
ence image in such a largely stable environment.
However, the disturbance to the ground, after land
surface recovering, is not great enough to alter
significantly the average intensity of return SAR
signals corresponding to each pixel of an SAR

Figure 21.36 Drainage channels: two major rivers in the region are not visible in (a) for the 35-day separation
coherence image Coh 12 but clearly shown as decoherence features in (b) for the 350-day separation coherence image
Coh 23

CH21 RESEARCH CASE STUDIES 365



multi-look image, thus the features are not visible
in Figure 10.8a.

This case demonstrates a unique function of
coherence imagery as a tool for monitoring the
environmental impact of human activities.

21.4.4 Summary

The primary value of coherence imagery lies in its
ability to record efficiently very subtle random
changes on the land surface in an otherwise stable
environment. If the average random change of do-
minant scatterers within a resolution cell exceeds
one-half of the radar wavelength in the slant range
direction, it will cause total decorrelation. Changes
at this small scale are usually not detectable on
conventional optical imagery. The change detection
technique based on multi-temporal SAR coherence
imagery is fundamentally different from the SAR
interferogram-based measurement technique. Dif-
ferential SAR interferometry is capable of measur-
ing centimetre-level land surface deformation (a
consistent block movement) but not workable with
the random changes in the same scale range. On the
other hand, coherence imagery can detect the cen-
timetre-level random changes but cannot provide
quantitative measurements.

In an arid environment such as the Sahara dis-
cussed here, the predominantly bare desert surface
forms an extremely stable landscape which retains
high coherence over very long periods (several
years). The contrast between this bright background
and the dark decorrelation signatures of any random
changes enables the detection and delineation of
unstable features. It is this propertywhich facilitates
the spatial and temporal mapping of surface pro-
cesses with a confidence unrivalled by other Earth
observation techniques, and over areas too large or
inaccessible for effective field surveys. This case
study demonstrates clearly the potential of SAR
coherence imagery to detect and interpret changes
in a desert environment. For example, persistent
decorrelation over short time intervals is direct
evidence of sand mobility.

The lack of precipitation data in remote desert
regions often hampers attempts to research the
contribution of catastrophic fluvial erosion to arid
landscapes. A sequence of short time-scale (month-

ly), frequent coherence images could provide criti-
cal objective information on the temporal and spa-
tial distribution of localized sporadic flood events.
Coherence imagery also provides an effective way
to detect human-induced disturbances over various
time intervals.

Amulti-temporal SAR coherence image presents
an objective record of irregular land surface changes
between two SAR image acquisitions as decoher-
ence features. Such low-coherence phenomena
can easily be distinguishable only when they are
in sharp contrast to a high-coherence background.
The technique is most effective for detecting
changes in a largely stable environment, such as
desert, but needs more sophisticated analysis in an
unstable environment with many other decorrela-
tion factors.

Questions

Section 21.3

21.1 Is the WLC method the most appropriate to
use in a case like this?

21.2 What other datasets could be considered?
21.3 Why do the extents of the older landslides not

match the areas predicted in the hazard as-
sessment and risk maps?

21.4 What can we say about the temporal con-
straints on a hazard prediction of this kind?
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22
Industrial Case Studies

This chapter describes two industrial case studies
conducted by the authors in collaborationwith other
co-workers. Some of the issues surrounding these
cases are highly confidential and so the material
here has been confined to those aspects of the work
which are directly related to remote sensing and
GIS, and largely to the methodological aspects of
the projects. In the first case (Section 22.1) thework
has been carried out jointly with Mr Anders Lie of
NunaMinerals A/S. The second case (Section 22.2)
represents a small part of a wider project funded
by UNICEF, and carried out for Gibb Africa Ltd,
by Image Africa Ltd (UK) and Aquasearch Ltd
(Kenya).

22.1 Multi-criteria assessment
of mineral prospectivity,
in SE Greenland

22.1.1 Introduction and objectives

In this case study we describe the data and
methodology used to enable a multi-disciplinary
assessment of prospectivity for a number of eco-
nomic commodities, namely nickel, copper and
PGEs (Platinum Group Elements), in previously
unexplored terrains of south-east Greenland. Since

this is a very large and ambitious project, we cannot
do justice to its full complexity here and so this
chapter contains a summary of the data preparation
and methodological aspects, rather than the results
which in detail are highly confidential. Some early,
regional results, in the form of an example predic-
tion map, are shown here since it is difficult to
convey the concepts without visualizing the results
to some extent.

This project is being conducted under a joint
venture agreement between NunaMinerals A/S
and Image Africa Ltd (UK). Its results are partly
intended as a tool for attracting investors for the
further development of any worthy areas identified
during the project. Themain reasons for conducting
the project are explained in this chapter and lie in
the fact that the south-east coast of Greenland
comprises vast and unexplored Achaean and Prote-
rozoic terrains which already have shown potential
for hosting mineral discoveries. It is ideal for a
GIS-based assessment using remotely sensed and
other regional geoscientific data and so is a good
case study example for this book.

The project involves three independent phases:
firstly, the testing, compilation and assessment of
rock and sediment sample material; secondly,
the systematic, multi-parameter spatial analysis of
remotely sensed and all available geoscientific
data; and finally, the exploration and ground
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validation of target areas pinpointed during the
course of the project. The study area consists of
two parts: the Reference (SW Greenland) and
Survey (SE Greenland) areas, as illustrated in
Figure 22.1. The general approach is to use the
‘fingerprints’ of known mineral occurrences in the
Reference area to help predict new occurrences in
the Survey area by identifying significant spatial
patterns in the various datasets we have at our
disposal. This approach is not new to exploration;
the use of GIS to conduct this kind of regional
spatial analysis is well documented elsewhere
(Bonham-Carter, Agterberg and Wright, 1988;
Knox-Robinson, 2000; Chung and Keating, 2002,
to name but a few) but in Greenland this is a novel
tactic.

22.1.2 Area description

The project concerns 24 500 km2 of highly exposed,
poorly explored Archaean and early Proterozoic
shield terrainwhich has significant inferred potential
for hosting mineral deposits, and which stretches
from Kap Farval in the south to the Ammassalik

Peninsula in the north. The terrain is extremely
remote and only a handful of expeditions have been
conducted to this part of Greenland (these are well
documented). We have built on that knowledge
during our work in the summers of 2006 and
2007, and visited some of the same locations, plus
a great many more. Logistically, fieldwork is ham-
pered by the persistent presence of icebergs along
some sections of the coast, making passage by ship
hazardous.Helicopter reconnaissance is hindered by
the lack of any refuelling stations, meaning that fuel
must be carried onboard ship. Fieldwork can be done
by ship alone but it restricts accessibility to near-
shore localities and means that far less distance can
be covered. A mixture of the two is optimum.

Being in the ‘rain shadow’ of the Greenland
ice sheet means that the east-coast terrain is gener-
ally dry and barren. Compared with the west coast,
it is also steep, largely ice covered and almost
devoid of vegetation and wildlife. The altitude and
steepness further necessitate the use of a helicopter
to conduct effective field reconnaissance and sam-
pling work.

The Reference area is well studied and a great
wealth of data and experience has been gleaned

Figure 22.1 (a) Map of Greenland showing the HMDP area; and (b) the project Reference and Survey areas
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from it. The Survey area has, in contrast, largely
been mapped only at regional scales. The geolo-
gical understanding of the west coast exceeds that
of the south-east coast and this may partly explain
why very little commercial exploration has been
conducted here. The map of known mineral
occurrences in Greenland is testament to this, as
it can be seen that there are far more on the west
than on the east coast (Figure 22.2); it is well
known that the potential of finding new occur-
rences is perceived to be greater where occur-
rences have already been found. The discrepancy
in understanding, knowledge and mineral poten-
tial between west and east coast terrains is being
addressed but to gain parity in such a large area,
effectively and relatively quickly, a novel appro-
ach is necessitated.

22.1.3 Litho-tectonic context – why the
project’s concept works

The Precambrian shield of south-east Greenland
comprises three distinct basement provinces:
Archaean terrain reworked during the early
Proterozoic (Ammassalik Mobile Belt, of the
Nagssugtoqidian Orogen), Archaean terrain almost
unaffected by Proterozoic or later orogenic activity
(the North Atlantic Archaean Craton), and juvenile
early Proterozoic terrain (theKetilidianMobile Belt
or Orogen). This project involves assessment of all
three terrains.

It is thought that the Nagssugtoqidian Orogen
extends beneath the Greenland ice cap to the east
coast and that it can be closely correlated with the
Torngat Orogen of north-eastern Canada (Van Gool

Figure 22.2 Mineral occurrence map of Greenland with the project Survey area shown in red
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et al., 2002), see Figure 22.3. It is also thought
that Greenland is closely related to similar,
well-explored terrains in Finland and Russia. We
conclude that the east coast has all the same litho-
tectonic suites and litho-geochemical characteris-
tics as the west coast and as provinces in Canada,
and that it should therefore have similar potential to
yield mineral deposits. This is our justification for
exploring for a series of mineralization styles,
which are already known to exist elsewhere.

22.1.4 Mineral deposit types evaluated

This sizeable area also comprises many different
litho-structural and geochemical settings; under this
project, a number of well-known mineral deposit
models are therefore being evaluated within
these terrains. Each type has been characterized
according to economic commodity, geological
setting and pathfinder minerals (primary and
secondary), to aid the selection of input layers

used in the generation of prediction maps. These
include komatiite-hosted nickel–copper–PGE,
mafic–ultramafic intrusion-hosted deposits, lode
gold and calc–alkali porphyry deposits. The deposit
model focused on here is the komatiite-hosted
nickel–copper–PGE type. To describe adequately
and illustrate the methodology and results for all
commodities and deposit models evaluated in this
project would far exceed the scope of this chapter
and, for the purposes of illustrating the methodolo-
gy, is unnecessary.

22.1.5 Data preparation

22.1.5.1 Published maps
Maps from the east coast are available at rather
coarser scales than other parts of Greenland, with
the exception of a few localities where detailed work
has been undertaken by the Geological Survey of
Denmark and Greenland (GEUS), and these have
beenmadeuseofwherepossible.TheReferencearea

Figure 22.3 Proterozoic reconstruction of Greenland and Canada, showing the Atlantic–Arctic litho-tectonic trend.
Modified after Van Gool et al. (2002). The approximate position of the Survey area is shown by the red polygon
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and theLindenowFjordareaare coveredbymapsat a
scale of 1 : 100 000 and thesewere also made use of.
Mapsat a scaleof 1 : 500 000 formed thebackboneof
the extraction of geological background knowledge
and were used to target the fieldwork during
the summer 2007 campaign (two map sheets cover
the Reference and Survey areas). These regional
maps contain considerable internal geometric
distortions, making it very difficult to georectify
them accurately; this emphasizes the importance of
remotely sensed imagery in providing an accurate
base map for interpretation and data capture.

22.1.5.2 Lithology
These published maps have been used to guide the
interpretation and spectral discrimination, using
ASTER imagery, of supra-crustal packages, mafic,
ultramafic and alkali intrusions and generally any
non-gneiss/granite outcrops. The absolute positions
of outcrops captured from maps have then been
corrected using the ASTER imagery.

For simplicity, four categories have been created
and coded with integer values of 1 to 4. These are
ultramafic rocks (4), basic meta-volcanic supra-
crustal packages (3), gabbros and other basic
igneous intrusions (2) and other alkali igneous
intrusive bodies (1). Since the vast majority of
exposed rocks in this part of Greenland are unmi-
neralized crystalline lithologies such as gneisses,

granite and granodiorite, we are really interested in
identifying any other outcropping lithology. In the
case of komatiite-hosted Cu–Ni–PGE deposits, the
mineralizations occur in massive sulphide form and
these are often small, dark and almost impossible
to identify directly using remote sensing. We must
therefore concentrate on identifying any potential
hosts such as ultramafic intrusions and basic volca-
nogenic supra-crustal packages (which may also
contain ultramafic rocks). Likewise, any mapped
gabbroic intrusions should be included since they
may be associated with ultramafic bodies which
have not yet beenmapped (given thatmapping is not
particularly detailed). We have not included the
younger, ‘Gardar’ intrusive bodies since these are
related to Atlantic opening events and are not
significant for this deposit type. At the first stage
of prediction, to avoid giving bias to one lithology
type or another, we use a background value of 0 to
represent gneiss/granite exposures and a value of
1 for all other lithologies (see Table 22.1). We also
accept that the maps will not show all lithological
outcrops of interest, and that some may have been
incorrectly mapped, so we hope to detect others
from the ASTER imagery.

22.1.5.3 Structure
Structural features have also been extracted from
the maps and since these are at a coarse scale, the

Table 22.1 Numerical coding for thematic input layers to the spatial modelling of komatiite-hosted Ni–Cu–PGE
prospectivity

Thematic layer Class represented Original values Buffer distance (m) Coded values

Lithology Ultramafic bodies 4 — 1
Basic intrusives (e.g. gabbros) 3 — 1
Basic supra-crustal
(meta-igneous)

2 — 1

Alkali intrusives 1 — 1
Crystalline basement
(gneiss and granite)

0 — 0

Structure Terrain boundary 3 10 000 1
Major 2 500 1
Minor 1 300 1
‘Unfractured’
(massive) basement

0 0 0
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features extracted tend to represent major faults
and structural sutures; again, their positions are
often inaccurate and require correcting or interpre-
tation using the ASTER imagery. The vast majority
of fractures and faults in the spatial modelling
database have been interpreted from the ASTER
imagery, working at a scale of about 1 : 50 000.

For the purposes of the spatial modelling exer-
cise, these interpreted (and mapped) structures are
taken to represent zones of fracturing (potentially
including faulting, shearing, jointing and other
planes or zones of weakness and discontinuity).
These are considered important as conduits and
potential destinations for mineralized fluids, which
are otherwise too small to be directly detected in the
remotely sensed imagery and may not be obvious
during fieldwork. Since they are represented as
linear features but are taken to representwider zones
in reality, buffers are calculated around the linear
features at variable distances, dictated by the rela-
tive tectonic significance of the structure. For
instance, major terrain boundaries are coded with
the highest rating value and minor faults the lowest;
these values are then used in producing the buffers
with the largest buffer distance for the most signifi-
cant structures and so on. The actual distances used
were chosen on the basis of field experience and the
published literature, and vary between 500 and
10 000m. A fuzzy distance-rated buffer layer was
then created in which buffer zones are coded from a
value of 1, closest to the structure, decreasing
gradually to 0 over the distance set by the structure’s
significance. The remaining, unfractured back-
ground is assigned a value of 0 (see Table 22.1).

22.1.5.4 Mineral occurrences
Mineral occurrence data were derived from several
Sources and their function is two-fold: to provide
evidence data for the prospectivity predictions;
and to provide data for the later cross-validation of
those prediction maps (not shown in this case study
since the work is incomplete and ongoing).

These data are simply point positions of known
mineral occurrences but with no numerical value as
such, except for nominal values to identify the
commodity (or commodities) found at that location.
The occurrences used here have been derived
from the GEUS south-west Greenland database,
from the Ujarassiurit public geochemical database
(managed by theBureau ofMinerals and Petroleum,
of Greenland) and from the laboratory results of our
own fieldwork.

For the komatiite-hosted Ni–Cu–PGE deposit
model a total of 78 known mineral occurrences
(containing pathfinder elements for this deposit
model) were used as evidence in the spatial
modelling. The point localities were coded (as in
Table 22.2), buffered at a distance of 300m, to
allow for inaccuracies in the positioning informa-
tion, and then converted to a binary raster with
values of 1 for occurrences and zero for the
background.

22.1.5.5 Remotely sensed image data
Some 60 ASTER level 1B scenes have been used
and these formed the most reliable and accurate
base-map framework for all other mapping and
data capture; they were also used to generate a
series of spectral indices.

Table 22.2 Mineral occurrences used and their reclassified values

Mineral occurrence Commodity represented
Original
values

Coded values
in binary raster

Ni, Cu Dominantly nickel plus copper 1 1
Cu, Au Dominantly copper plus gold 2 1
Au Gold 3 1
Au, Cu Dominantly gold plus copper 4 1
PGEs Platinum Group Elements 5 1
Various All other elements 6–99 0
— Background — 0
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Ideal acquisition time is during the summer
since the snow disappears in June and reappears in
September, making July and August the ideal
months; all the data used in this project were
acquired in those months, between 2001 and 2006.

DEMs were first generated from each ASTER
scene, using the onboard ephemeris data. Very
limited ground control data exists (only at limited
sites visited during scant field trips) and this is
insufficient for any practical purposes here. The
DEMs were then used to ortho-rectify each ASTER
scene.

Prior to any image processing, the ASTER
images were pre-processed to mask the very bright-
est targets, ice (and snow), and the darkest targets,
water, from the data. Without doing this, the en-
hancement of geological targets becomes very
difficult, if not impossible. Generally speaking,
sea pixels are not difficult to remove when the
water is clear, since its reflectance in the infrared is
almost zero. The problem comes when water con-
tains suspended rock flour, as is commonly the case
in the upper reaches of fjords around Greenland.
Reflectance from the suspended rock flour renders
the water almost indistinguishable from that of
land pixels. Defining a threshold at which to mask
flour-loaded water becomes a very delicate opera-
tion, since some land pixels will be lost if great
care is not taken. There will be cases where the
removal of the last pixels, representing the most
stubborn flour-laden waters, has to be done manu-
ally, using a vector mask (which is extremely
tedious and to be avoided if at all possible). With
ASTER data acquired on very different dates, the
algorithm used to remove ice and sea required
customizing for each set of illumination condi-
tions. Fortunately, one long strip of data collected
on a single day covered much of the central and
southern part of the Survey area, making this job
slightly less arduous. The logical expression con-
structed required the examination of the visible and
thermal bands over land, sea and ice, to identify
suitable thresholds; an example is shown in
Figure 22.4.

22.1.5.5.1 Image processing for general visuali-
zation A standard false colour composite mosaic
(of ASTER bands 321 RGB) of the entire area was
constructed and used for both general visualization

and interpretation, and also for field reconnaissance
planning (shown in Figure 22.4).

For general visualization, this is best produced
from data which still contain snow and the ice
masses since it is easier to interpret this in the
field. Individuals not so familiar in working with
remotely sensed data often find it difficult to
navigate using imagery when it is in its processed
and rather abstract form. The best image for
general visualization and navigation in the field
should be as simple as possible so that image
features can be readily correlated with real objects
on the ground, (including glaciers and ice-capped
mountains).

22.1.5.5.2 Targeted spectral image processing
Ratio indices have been derived from ASTER
VNIR, SWIR and TIR data to highlight various
chemical characteristics of rocks and minerals,
while also suppressing topographic shadowing.
These indices, or relative absorption band depth
images as they have been described (Crowley,
Brickey and Rowan, 1989; Rowan, Mars and
Simpson, 2005), use the DNs from the bands mark-
ing the shoulders of diagnostic absorption features;
the principle is illustrated in Figure 22.5. Here they
have been derived to highlight the spectral absorp-
tion features of iron oxides and hydroxides,
in weathered gossaniferous zones (b2/b1 and
b4/b3), MgOH or carbonate content (b6 þ b9/(b7
b8)) and silica paucity, to reveal mafic and ultra-
mafic rocks (b12/b13) and used to target lithologies
of interest (where these are extensive enough to be
detected).

Our primary mineralized targets are all associat-
edwith lithologies which are considerably poorer in
silica content than the granites/gneisses that make
up the vast majority of exposure. Many observed
mineralizations have associated zones of hydrother-
mal alteration but in general these are of very
limited extent and so undetectable by ASTER. So
spectral indices aimed at highlighting hydrated
minerals (as would be normal in detecting alteration
and mineralization in other litho-tectonic settings)
tend to reveal areas of weathered granite/gneiss
rather than any alteration associated with
mineralization.

Some of these are illustrated in Figure 22.6 for a
small part of the Survey area. The indices suggest
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that there are more outcrops of supra-crustal
packages than the ones mapped; this is not surpris-
ing given the mapping scale. We also see that there
is variation within the mapped packages: some
zones are more mafic than others (Figure 22.6c)
and some zones are altered (Figure 22.6d). The
mafic silicates index in Figure 22.6c exploits
the Restrahlen feature of reflectance spectroscopy
at thermal infrared wavelengths and indicates
the presence of silicate minerals which are
characteristic of mafic igneous rocks rather than
the acidic group; here red colours indicate the
mafic igneous zones within the supra-crustal
packages, against the acid crystalline background
of gneisses (blue). The index shown in
Figure 22.6c shows the intensity of absorption
caused byMgOH bonds in hydrated (altered) basic
igneous minerals, such as chlorite, epidote, talc,
and may indicatewhere the supra-crustal packages

are intensely fractured, weathered or altered
through fluid passage. Other useful indices include
that highlighting oxidized iron at the surface, as an
indication of gossan development, and that which
highlights iron in silicate phase, as an indication of
the presence of mafic igneous rocks (as shown in
Figure 22.6d).

22.1.5.6 Geochemical sample data
The geochemical data used here are a compilation
of laboratory analysis results from three sources:
rock samples collected in the 1960s, rock and
sediment samples collected during two targeted
field reconnaissance seasons in 2006 and 2007, and
data from the Ujarassiurit database. Samples from
the 1960s and those collected in 2006 were also
analysed using a field spectrometer (PIMA and
ASD, respectively), the results of which have been
very useful in characterizing both the background

Figure 22.4 Standard false colour composite mosaic of: (a) the entire area (Reference and Survey); (b) detailed area
on the east coast (indicated by the red box in (a)), with ice and sea masked out; and (c) histograms for band 3 of this
detailed area before and (d) after masking of ice and sea
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spectral signatures and those of altered samples
from known mineralized localities.

The coordinate references of some of the data
points are more reliable and accurate than others.
This is particularly the case for the Ujarassiurit
data where, in some cases, the positions were not
obtained using a GPS instrument but were approxi-
mated on a map sometime after collection.

From these data, an ‘intelligent’ geochemical
database has been developed, principally for the
purposes of this project but also for best practice in
managing company assets. The data have been
categorized according to the method of analysis
and of field collection, the project they are associ-
ated with, as well as when and by whom they were
collected. In this way, each result can be viewed
critically, and with understanding of the likely
significance and reliability of its contribution to the
modelling of prospectivity.

For each particular deposit model, certain path-
finder elements were selected: nickel, copper,
cobalt, chromium, gold, platinum and palladium in
this case. The sample point data for each pathfinder
element were then interpolated, using a minimum
curvature tension (spline) local polynomial func-
tion, to produce a continuously sampled represen-
tation of estimated element concentration over the
entire area. For the elements used, the concentration
values have been processed such that values below
the detection limits (during laboratory preparation
and analysis) were set to 0, and anomalously high
values were clipped at an arbitrary value (of 1), and
the logarithms of the remaining values were then
used. This ensured that the interpolation was not
biased either by extremely low values (which are of
no interest) or by extremely high values (whichmay
be produced by the nugget effect, and therefore are
also of low interest). The use of log transformed

Figure 22.5 The basis of spectral index (or band depth image) generation: (a) SWIR reflectance spectra of talc,
chlorite and epidote; and (b) the same spectra convolved to ASTER SWIR bandwidths. The sum of the band DN at the
maxima either side of the feature is divided by the sum of the bandminima DN, in this case bands 6 and 9 over 7 and 8,
will highlight the broad absorption feature between 2.2 and 2.4 microns which is characteristic of talc and especially
chlorite and epidote
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Figure 22.6 Graah Islands area of south-eastern Greenland: (a) Standard false colour composite (ASTER 321 RGB)
showing two supra-crustal packages as identified in publishedmaps (green polygons); (b) mafic silicates spectral index
(b12/b13) displayed as a pseudo colour layer with increasing value from blue through to red (0–255); (c)MgOH spectral
index (e.g. epidote, chlorite, talc) indicating altered basic volcanic rocks, displayed with the same colour table as (b); and
(d) ferric iron in silicates index (ferromagnesian minerals). The field of view is 14 km
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values is standard practice in geochemical analysis
and is appropriate here since it is the pattern (distri-
bution) of values that is of interest rather than the
absolute concentration values themselves.

The ‘gridded’ element data were then scaled to a
0–255 value range for input to the spatialmodelling.
Once again it is important that ice and sea are
masked from the data before scaling to the 0–255
value range and not afterwards. If scaling is
done afterwards, the value range of the significant
pixels (i.e. land pixels) will be suppressed (see
Figure 22.7). We are most interested in finding
areas where the values are truly elevated with
respect to the background values, rather than minor
local perturbations in the background level. In this
respect, it is also important to notice the shape and
spread of the histogram. A histogramwhich shows a
single, normally distributed population without
skew (or with slightly positive skew) is highly likely
to represent background levels of that element.
What we would like to see is a negatively skewed
histogram that has several peaks (i.e. representing
multiple populations), as shown in Figure 22.7(d);
see also Section 15.2.1.

A summary of the geochemical pathfinder
layers used and input to the spatial prediction
modelling, for this deposit model type, is shown
in Table 22.3.

22.1.5.7 Regional geophysical data
Regional geophysical data have also been made
available to the project, in the form of gravimetric
point sample records which have been corrected for
free-air and Bouguer anomalies. These data were
then interpolated to produce a surface representing
regional gravity for the project area. It was found
that although these data could be used for relative
interpretations of anomalies, they could not be used
within the spatial modelling without introducing a
considerable regional bias, since they had not been
corrected for the presence of theGreenland ice sheet
which exerts a very broad effect on the data.

Since we have insufficient information to make a
rigorous correction of this effect, we perform a
‘makeshift’ correction by subtracting a regional
average, as calculated using a 31� 31 average filter,
from the individual values, thus removing the low-
frequency variation (caused by the ice) and leaving
the high-frequency information representing anom-

alies of geological origin (see Figure 22.8). The
result can then be used within the spatial modelling
since the data have effectively been normalized:
high values in one area have similar absolute value
range, and similar meaning, to those in another
location, a vital consideration with any data used
in this kind of work. Once again, the interpolated,
ice-corrected gravity data must be masked for ice
and sea before being scaled to an 8 bit (0–255) value
range, for the same reasons outlined previously.

22.1.6 Multi-criteria spatial modelling

Broadly, the strategy is to conduct a semi-auto-
mated suitability mapping of the Survey area. The
spectral, structural, geochemical and stratigraphic
characteristics of proven mineral occurrences in
the Reference area of south-western Greenland
have been used as evidence fromwhich to estimate
the probability of discovering comparable mineral
occurrences in the Survey area of south-eastern
Greenland.

The Spatial Modelling and Prediction (SPM)
software package (first developed by C.F. Chung)
is being used here for the evaluation of our criteria,
and to generate probability estimates (or prediction
maps). Once the semi-automated prediction maps
representing the potential for identifying new
targets have been produced satisfactorily, they will
be weighted by market-driven factors, such as
commodity price and accessibility, to identify
economically favourable areas for further detailed
ground validation.

22.1.6.1 Method of layer combination
All data must have been normalized to a common
scale for use in themulti-criteria analysis, and in this
case a byte scale (0–255) has been used. They must
also be coded so that all are positively correlated
with high suitability. No input evidence must be
contradictory or the results will be meaningless.

Bayesian probability discriminant analysis was
chosen as the most appropriate method for com-
bining the input layers and estimating prospectiv-
ity (as described in Section 18.5.3). The main
reason for doing so is that this method involves
the least subjective decision making during crite-
ria combination. Some subjectivity cannot be

CH22 INDUSTRIAL CASE STUDIES 381



avoided along the way, in the capture and prepa-
ration of the data, but at the point where the input
layers are combined we have to acknowledge that
we do not have sufficient knowledge to apply any
further rules or weighting of the input layers. In
effect, we want to let the data speak for themselves
and tell us what actual patterns exist. This neces-
sity is a natural reason for choosing Bayesian
probability as the method. We use known occur-

rences as our evidence, to gain the ‘signature’
(distributions) in the input layers, and use these
to make predictions of the likelihood of finding
new occurrences.

If known mineral occurrences are in fact associ-
ated with high values in the input layers, then the
output prediction map should predict them. If so,
then we should have more confidence in the map’s
prediction of other areas as showing potential.

Figure 22.7 (a) The interpolated Ni tenor grid of entire area, with sample points (black dots), and its histogram (b);
and (b) the interpolated grid of the land area and its histogram (d), after masking sea and ice. The histogram in (d) is
skewed towards the low end of the value range and clearly shows several significant populations, indicated by the
smaller peaks on the right. This represents the effective removal of background information and bias caused by the
estimated low and high values in the ice and sea areas
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Table 22.3 Numerical coding for continuously sampled input layers to the spatial modelling of komatiite-hosted
Ni–Cu–PGE prospectivity

‘Continuous’
layer Class represented

Method of processing/
preparation Coded value range

ASTER:
Mafic content Absence of free

silica (quartz)
TIR (b13/b10) Increasing values,

on an 8 bit value
range (0–255)Iron oxides Oxidized iron at the

surface (‘rusty zones’)
VNIR (b2/b1)

MgOH Presence of MgOH in
mafic minerals

SWIR (b6 þ b9)/(b7 þ b8)

Geochemical:
Tenors Interpolated from nickel,

copper, cobalt and
chromium tenors,
i.e. metals in
sulphide phases

Rock samples only

Au, Pt and Pd Interpolated gold,
platinum and
palladium content

Rock and
sediment samples

Geophysics:
Gravity Corrected for regional

effect of Greenland
ice sheet

Interpolated from
regional Bouguer
and free-air corrected
ground sample point data

Figure 22.8 Schematic representation of the ice correction applied to the gridded Bouguer-corrected gravity
surface values. The black line illustrates both the local variations and the regional trend imposed by the ice cap
(here sloping upwards left to right), the green line represents the mean (low-frequency aspect) of this surface
(as calculated using a spatial averaging filter), and the red line represents the differential surface (high-frequency
aspect) which reveals the significant fluctuations in gravimetric potential without the regional bias imposed by
the large mass of the polar ice cap
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One result for the deposit model described here is
shown in Figure 22.9. It reveals a series of high-
value areas, some more extensive and more intense
than others, at various locations throughout the
Survey area. Some of these we have confidence in,
others we suspect to be exaggerated by the over-
whelming presence of a few high gold values when
this is used as a pathfinder element; in addition,
there are some areas that we think should appear
more significant than they do here. Clearly further

modifications are required. The path to achieve a
satisfactory result is not a linear or easy one, but one
where criticism is necessary, at every stage.

22.1.7 Summary

Data quality is one of the most significant issues
here and probably in all cases of this type. A vital
lesson is that criticism of and understanding of the

Figure 22.9 Prediction map representing prospectivity for komatiite-hosted Ni–Cu–PGE deposits in the Reference
and Survey areas
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data, rather than blind acceptance, is absolutely
crucial. Time must be spent during the data prepa-
ration stages, and long before allowing the data to be
input to the multi-criteria spatial analysis; the old
adage of ‘rubbish in, rubbish out’ is very true here.

There are several, very tangible reasons for
conducting this project in south-east Greenland,
and for conducting it in the most correct way
possible.

In comparison with the rest of Greenland, the
depth of knowledge in the Survey area is far lower
than elsewhere. The published maps are at a far
coarser scale here than anywhere else. It is the only
part of Greenland’s coast which has never been
colonized andwhere the logistics of travel andwork
have prevented all but a very few, highly focused
expeditions. As a consequence, this project now
represents a significant contribution to the collec-
tive knowledge base for the south-east coast of
Greenland.

We chose the Bayesian probability method of
multi-criteria evaluation since it is one of the most
objective. Given the vast complexity of the area and
the volume of data involved, we wanted to let the
data speak for themselves, and prevent bias, as
much as possible, at least in the way they are
combined. The Bayesian predictive discriminant
analysis method used here identifies the signature
of known occurrences in each of the input data
layers and then assesses the probability of finding
occurrences at other locations on the basis of the
combinations of the input evidence layers (as de-
scribed in Chapter 18). Some bias is unavoidable
since we do not have unlimited data and the size of
the area means we must spatially sub-sample the
data to make the processing manageable.

The purpose of conducting this at a very regional
scale of observation and prediction is to demon-
strate potential in a few target areas. These few key
areas will then become the subject of further, more
focused predictions. This is the logical way to
proceed and theway that all studies based on remote
sensing generally proceed. It would be pointless to
tackle the entire area at the highest conceivable level
of detail from the start. The cost of this would be
astronomical and would be extremely inefficient
since we actually expect that the vast majority of
theproject areawill be showntobenon-prospective–
just one of the drivers for this work is to prevent

ourselves and others fromwasting valuable time and
funds in those areas.

Further work will include repeating this method
for other mineral deposit types. These will neces-
sitate the use of different spectral indices, path-
finder geochemical elements, lithological units
and mineral occurrence layers, as appropriate to
each model type. In each case, we have a certain
expectation of where the most predictive locations
are likely to be, on the basis of our own field
experience. In other words, the ground ‘truthing’
is partly provided by our own observations, even
though we have only visited a tiny fraction of the
area. If our result succeeds in predicting the loca-
tions that we know to be prospective, our under-
standing is reinforced and we can have more
confidence in the map’s ability to predict previ-
ously unknown locations as being prospective.
We will later use cross-validation curves to back
up our own intuitive reaction in amore quantitative
way. These will give an indication of the effective-
ness of our prediction methodology, and which of
our input layers and occurrences are most signifi-
cant; they may even reveal unexpected anomalies
in the data, occurrences or results which are sig-
nificant in some previously unknown way.

We conclude that:

. The size of the project area requires a novel and
effective methodology to be successful.

. The paucity of data compared with other areas of
Greenland means that the level of understanding
here needs to be raised rapidly, to catch up.

. This part of the Greenland coast represents a
geologically, tectonically, prospectively and topo-
graphically very complex area – one inwhich poor
data quantity and quality, and little collective
ground experience, mean that the potential for
error in this type of work is enormous. As rigorous
an approach as possible is therefore necessary.

. This effort represents both the most likely way to
achieve some success and a significant invest-
ment for future exploration in this part of Green-
land. It is, in short, the right thing to do in this
context.

Despite our best efforts, there are some false
positives in the results, and because of data pau-
city, there will almost certainly be some localities
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that are poorly predicted. Here our own experi-
ence and knowledge will be required to rule out
the former, and a little imagination will be needed
to pick out the latter. This stage of work is only
the beginning. In the next phase of the work, it
may become necessary or desirable to use differ-
ent methods of analysis to derive prediction
images. Perhaps at such a time, we may have
clearer ideas of the specific geological controls
involved and can therefore employ more rigid
decision rules or have more selective control over
uncertainties. We hope that several of the areas
predicted in this work will form the focus for the
next stage of exploration, data collection and more
detailed prediction.
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22.2 Water resource exploration
in Somalia

22.2.1 Introduction

This case study is based on work conducted as a
collaborative effort between Image Africa Ltd and
Aquasearch Ltd, for Gibb Africa Ltd, and was
funded by UNICEF. The work involved the evalua-
tion, through remote sensing, of the region around
the city of Hargeisa, in Somalia (formerly British
Somaliland), within a broader project whose remit
was to identify potential bulk water resources
for this city. Various criteria for such potential
resources had to be satisfied within this remit. For
instance, any suitable bulk resource should be no
more than 100 km from the city, and it should
ultimately be capable of supplying a demand of
40 000m3/d.

The general approach was to conduct a relatively
detailed desk study, in two phases, followed by some

targeted fieldwork. The first phase consisted of
regional-scale geological interpretation and identi-
fication of target areas which warranted more de-
tailed investigation. The second phase comprised
similar but more focused interpretation of those
target areas, using two- and three-dimensional visu-
alization, using DEMs generated during the project,
as well as spectral enhancement via image proces-
sing. The results of phases 1 and 2 image interpreta-
tion and digital mapping were carried out in parallel
with, and then combined with, a detailed literature
search and evaluation of borehole and other avail-
able hydrological data. The detailed nature of the
two desk study phases was especially significant
given the hostilities which were at the time prevent-
ing completion of the work through field investiga-
tions, a situationwhich persists to this day. Thework
presented in this case study represents a summary of
the first and second phases, as an illustration of the
approach taken for a case of this type.

Specifically, the objectives of this part of the
work were:

. To provide regional geological interpretation
and mapping.

. To provide evidence of the location and extent
of potential aquifers (as described by hydrogeol-
ogist M. Lane of Aquasearch Ltd).

. To make recommendations on areas for further
investigation.

The first objective would be satisfied largely
using medium-resolution data, in the form of
Landsat-7 ETMþ imagery, an SRTM DEM, pub-
lished geological maps and mean annual rainfall
(MAR) data. The second and third objectives would
involve the use of ASTER imagery and DEMs in
addition to geological maps.

The study area occupies some 300 km2 along
the northern coast of Somalia (formerly British
Somaliland), in north-east Africa, and is illustrated
in Figure 22.10. It includes coastal alluvial plains
in the north, volcanic escarpments, mountainous
massifs, a limestone plateau and extensive desert
sands to the south, and encompasses varied climatic
conditions. The average rainfall here is 380mm per
year and this falls largely on the high ground.

There are a number of potential aquifers in this
region. The most significant ‘extensive aquifers’
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with the potential to yield bulk water resources
could be found in any or all of the solid geological
units. These units are the Precambrian fractured
crystalline metamorphic rocks, Jurassic limestones
and sandstones (Adigrat Formation), the Nubian
Cretaceous sandstone and the Eocene Auradu lime-
stone. The second most significant comprise local
structural basins which are dominantly filled with
Jurassic limestones and younger sediments. Then
there are minor sedimentary aquifers, several of
which were identified in previous studies in the
western, central and eastern coastal plains respec-

tively. The alluvial and colluvial materials of the
coastal plains were also considered.

22.2.2 Data preparation

The datasets used in this study are listed in
Table 22.4. The Landsat ETMþ images used for
this work cover an area of about 300� 200 km2,
spanmore than one climatic zone andwere acquired
during April, May and September of three different
years. In such circumstances, the production of a

Figure 22.10 Map of the study area in Somalia, NE Africa, showing the main cities and roads, the 100 km radius and
the image scene coverage used in this work (Landsat-7: five clear, labelled polygons; ASTER: four yellow, labelled
polygons). The 100 km radius marker and country border are used for scale in all regional images shown here
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seamless image mosaic is almost impossible.
Images involving combinations of bands 1, 2 or 3
also suffer from the effects of atmospheric haze, and
this is most noticeable in the areas closest to the
Sahara. Atmospheric quality over the mountainous
and coastal areas, by comparison, is very good.
The haze effects are most noticeable therefore in
the southern and south-eastern Landsat scenes,
and are responsible for the poor contrast matching
(and rather obvious scene boundaries) between
these two and the northern and western scenes.
Images involving bands 4, 5 and 7, in contrast, are
affected less by the effects of haze, so that the scene
boundaries are less noticeable in the image shown in
Figure 22.16. In each of the image maps presented,
the data have been contrast enhanced to match as
closely as possible.

The MAR data were supplied in point form by
Gibb Africa Ltd, and were gridded and contoured
for correlation with other data. The SRTM DEM
data were downloaded, as compressed 1� tiles (from
the NASA public data distribution centre, see
Appendix B.3) decompressed, georeferenced and
‘mosaiced’ into a single DEM of the entire study
area, with a pixel size representing 90m on the
ground. DEMs (gridded at 15m) were also gener-
ated from each ASTER scene, using between 6 and
20 control points identified in each scene. The
easting and northing coordinate values were col-
lected for these points, from the ortho-rectified
Landsat ETMþ imagery, and the corresponding
height values for these points were collected from
the SRTM DEM. Each of the four ASTER DEMs
was generated separately and then mosaiced. The
discrepancy in elevation between any of the four
scene DEMs was less than 5m, providing an almost

seamlessDEMmosaic of the target areaswhich is of
sufficient accuracy to support mapping at 1 : 50 000
scale. Image data coverage is illustrated in
Figure 22.10.

22.2.3 Preliminary geological enhancements
and target area identification

The first phase comprised a regional-scale image
interpretation and desk study, to identify major
areas of interest and to extract as much informa-
tion on regional geology as possible, given that
map information was limited. This involved
the use of broadband, medium-resolution, wide-
swathe imagery, Landsat-7 ETMþ in this case, to
produce a regional geological interpretation, from
which potential target areas were identified for
further investigation. In addition, the SRTM DEM
was used to extract regional structural information
and to examine areas of aquifer recharge with
respect to topography.

22.2.3.1 General visualization and
identification of natural
vegetation and recharge areas

Once again we begin with a general visualization of
the area, using simple colour composite images
(true colour and standard false colour) and a shaded-
relief image generated from the regional SRTM
DEM.

The Landsat 432 colour composite reveals that
the distribution of vegetation is not regular or even
but is extremely sparse except in the western and
central–eastern mountains (Figure 22.11). Calcu-
lation of an NDVI from the Landsat data and then

Table 22.4 Summary of digital data used in this study

Data Path/row Acquisition dates

Landsat-7 ETMþ 164/053–054,
165/053–054, 166/053

1999, 2000, 2001

ASTER Four scenes 2002
ASTER DEMs (15m) Four scenes 2002
Maps British geological

1 : 50 000 map sheets
Sheets 20–23, 23–34

Rainfall data Mean annual rainfall
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comparison of this with the MAR data and the
DEM shaded-relief image (Figure 22.12) reveals
that there is close correlation between the main
centres of incident rainfall, persistent natural veg-
etation and high elevations. These areas comprise
the principal areas of groundwater recharge for
this region; they lie around the outer part of the
100 km zone around Hargeisa. Some small
patches of vegetation can be seen in the valleys
which cut the Haud Plateau, and at the base of
the scarp slope of this plateau, to the south of
Hargeisa itself.

22.2.3.2 Regional geological
interpretation

Simple colour composites, band ratios and the
SRTM DEM were integrated and used to produce
a regional geological interpretation, which was
suitable for use at about 1 : 50 000 scale. Compo-
sites of bands 531 and 457 (Figure 22.13a and b)
formed the backbone of this work as they provided
very good discrimination ofmetamorphic basement
lithologies, carbonates, volcanics and superficial
sedimentary cover. The DEM and images together

allowed a very detailed structural picture to be
produced (Figure 22.13c), especially in the area to
the south ofHargeisa, where theNubian andAuradu
sediments are faulted and dip away to the south
beneath the desert sands. Structure in the metamor-
phic basement massifs is too complex for interpre-
tation at this scale of detail, so only the major
terrain units were identified. A number of major
sedimentary basins were identified within these
massifs in the western part of the area, and these
were predominantly filled with carbonate
sequences.

The broad bandwidths of Landsat SWIR bands
mean that carbonates and hydrated minerals (and
vegetationwhere present) can be highlighted but not
distinguished from one another. If we use a ratio of
bands 5 over 7, we will highlight hydrated minerals
(clays) and carbonates. By looking at the spectral
profiles of the major units of interest, we find that
the carbonates have, in general, higher DN values,
in the daytime thermal infrared of Landsat band 6. If
we modulate the b5/b7 ratio with the TIR, we
produce an index image which highlights all
the major carbonate bodies in the area, in addition

Figure 22.11 Landsat 432 standard false colour composite image
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to some gypsiferous deposits which are interbedded
with them. The resulting image is shown in
Figure 22.14; here themain targets are all highlight-
ed and circled to identify them.

22.2.4 Discrimination potential aquifer
lithologies using ASTER spectral
indices

The second phase involved sub-regional-scale in-
terpretation of ASTER data, to evaluate the target
areas identified in phase 1 and to assess whether
these warranted further, detailed field-based
investigations.

Given the lithological nature of the targets iden-
tified in phase 1, mainly carbonates and closely as-
sociated sandstones, ASTER is particularly suited

to the task of discriminating them. Using ASTER
data, wavelength-specific variations enable the
identification of carbonates (limestones, marble,
calcite and dolomite), silicates (quartz, quartzites
and different families of igneous rocks) andMgOH-
bearing minerals and rocks (weathered, metamor-
phosed and altered basic igneous rocks), in addition
to iron–aluminium silicates and iron oxides/hydro-
xides (both as alteration and weathering products),
different families of hydrated minerals (clay alter-
ation products, weathering breakdown products and
evaporates such as gypsum and anhydrite) and of
course vegetation.

The main target areas for investigation in phase 2
included the Bannaanka Dhamal, Agabar Basin and
Nubian/Auradu contacts south of Hargeisa, the
Waheen and the Dibrawein Valley. We cannot de-
scribe all the identified target areas within this

Figure 22.12 SRTM DEM shaded-relief map with thresholded NDVI (red) and mean annual rainfall contours overlain,
to indicate the close correlation between rainfall recharge areas and natural vegetation distribution

390 PART THREE REMOTE SENSING APPLICATIONS



Figure 22.13 (a) False colour composite mosaic of Landsat bands 531 DDS of the entire study area for general
interpretation of geological features: sands from the Sahara appear in yellow and brown tones, with crystalline
basement lithologies in dark blue and purple tones, and coastal alluvial sediments in the north in a variety of
similar colours according to their provenance. The white box indicates the extent of the images shown in (b) and
(c). (b) False colour composite of bands 457 DDS showing carbonate rocks in greenish tones, basaltic volcanics in
dark reds, desert sands in pinkish tones and crystalline basement lithologies and coastal alluvial materials in
shades of blue. (c) Detailed regional geological interpretation made from the Landsat imagery (lithological
boundaries in black, structures in red). The two boxes in (b) and (c) indicate the locations of the detailed areas
shown in Figures 22.16–22.18. Field of view is 340 km. The location of Hargeisa is indicated as H (cyan)
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chapter sowe focus on two of them: (a) the Hargeisa
and (b) Waheen areas.

22.2.4.1 Hargeisa area: Auradu limestone
and Nubian sandstone

The objectives here are to enhance and delineate the
outcropof themainpotential aquifers: thecarbonates
and sandstones; specifically the Eocene Auradu
limestone and the Cretaceous Nubian sandstone
lying stratigraphically below it. The Nubian sand-
stone is the principal aquifer for thewhole of eastern
Africa, its outcrops covering several million square
kilometres – it represents the largest fossil aquifer in
theworld. It has been described as a hard ferruginous
sandstone with several clay-rich intercalations.

Given the two distinct targets of carbonates and
sandstones, we use ASTERVNIR, SWIR and TIR
indices (relative absorption band depth images) to
identify iron oxides, carbonates (limestones and
marbles) and silica-rich materials (sandstones,
granites, gneisses). Producing a composite result,
bringing all these three indices together, in which

iron oxides/hydroxides (Fe�O and Fe�OH absorp-
tion) are enhanced and displayed in the red silicate-
rich materials (S�O absorption, by quartz sands,
gneisses, etc.) in green, and carbonates (C�O
absorption) or weathered and altered basic volca-
nics (MgOH absorption) in blue. The result is a very
brightly coloured image, shown in Figures 22.15
(the entire area), 22.16d (Hargeisa area) and in
22.18d (Waheen area).

In Figure 22.15, the desert sands of the Sahara in
the south appear very noticeably in red tones. In the
central area and to the north-west of Hargeisa, the
yellow colours indicate high silica content and rela-
tively high iron oxides; here the basement is com-
posed of crystalline gneisses and granites and the
surface may have a covering of desert sand or some
desert varnish. The bright greens in the northern part
of the area represent almost pure quartz sands of the
Waheen and coastal alluvial systems. The basic
Adenvolcanics appear inmagenta and bluish purple,
indicating MgOH absorption of weathered (or al-
tered) basalt and iron oxide/hydroxide absorption.

Figure 22.14 Ratio of Landsat bands ((b5/b7)b6), revealing carbonates and possibly gypsiferous rocks which form
the target areas for detailed field-based investigation in phase 2: Jurassic limestones (cyan); Eocene and Cretaceous
limestones (green); transported gypsiferous debris in the Bokh Valley (pink). The 100 km circle and political borders
(red and yellow dashed lines) are also shown for reference
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The remaining bright royal-blue tones represent the
carbonates of the Waheen (north), the Dibrawein
Valley (west) and Auradu limestones (south).

The second objective here in this area is to
identify the Nubian sandstone specifically, if pos-
sible. The images in Figure 22.16 suggest that
silica-rich targets cover the entire northern part
of this area, so identification may not be straight-
forward. The 468 false colour composite in
Figure 22.17a reveals the Auradu limestone in
yellow tones, with the crystalline basement of the
north and other areas around Hargeisa appearing
in pale blue tones. There is also a narrow pink unit
striking west to north-east, which in this band

combination indicates the presence of hydrated
minerals. Looking at the silica index shown in
Figure 22.16b, we see that it has two distinct
populations, a silica-rich and a silica-poor one.
If we threshold this image to remove silica-poor
areas, and stretch the remaining silica-rich popu-
lation, the image in Figure 22.17b is produced.
Here we can see that the areas of very pale blue in
Figure 22.17a show up as having the highest silica
content. The city of Hargeisa appears as an area of
low silica values. We know that the Nubian sand-
stone outcrops in this area but cannot easily
distinguish it from other silica-rich materials on
the basis of spectral information alone.

Figure 22.15 Spectral index colour composite: iron oxides (red) highlighting red desert sands and ferromagnesian-
rich lithologies, silica abundance (green) highlighting quartz sands and siliceous crystalline basement lithologies,
and carbonate and MgOH abundance (blue) highlighting limestones and basic volcanics so that the basic volcanics
appear in magenta whereas the limestones (and marbles) appear as pure blues, the coastal alluvial sediments appear
in greens, oranges and reds whereas the limestones covered with sands appear cyan green and oxidized iron in sands
appear orange
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If we turn to theASTERDEMof the areawe see a
number of breaks in slope running across the image,
to the south and the north of Hargeisa. If we calcu-
late the slope angle from the DEM (Figure 22.17c),
we see these breaks in slope very clearly and notice
that they coincide with the scarp slopes of the
dipping sedimentary units here. A subtle scarp slope

can be seen in the west, which coincides with the
narrow pink unit visible in Figure 22.17a; this can
be followed eastwards but its outcrop pattern
becomes more complex and it becomes more
difficult to discern. The Nubian sandstone for-
mation is reported to contain a number of clay-
rich (perhaps mudstone) intercalations (Sultan

Figure 22.16 The Hargeisa area: (a) iron oxide content (b2/b1); (b) silica content (b13/b10); (c) carbonate index
((b6þ b9)/(b7þ b8)); and (d) ratio composite image produced by combing (a), (b) and (c) as RGB: desert quartz sands
appearing yellow and orange, with a contribution from high silica content (green) and iron oxides (red); crystalline
gneissic basements (beneath the sands) appear in yellow (high silica); the Auradu carbonates appear in bright blue
tones, some patches of green appear in valleys where carbonate and silica signatures aremixed. The upper surface of the
Auradu limestone plateau, and the valleys cut into it, appear red suggesting it has a strong iron oxide content, perhaps
produced by a surface coating or ferricrete. Field of view is 33 km in width
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et al., 2004); we suggest that the narrow pink band
described previously represents the base of the
Nubian sandstone formation.

This example reveals the need for complementa-
ry datasets and field verification in conducting this
type of work; the spectral information gives an
honest indication of what is at the surface but the
actual explanation for it may be elusive until other
data can be introduced and/or a visit made to the site.

22.2.4.2 Waheen: Alluvial gravels
The objective here is to establish any indication of
water stored in the localized alluvial basins along
the coast. The images indicated that the deposition
sediment (transport) direction is broadly to the north
and the Gulf of Aden.

The apparent absence of vegetation is revealed in
Figure 22.18a. The materials here are granular and
composed of silica-rich material (as shown in

Figure 22.17 The Hargeisa area: (a) 468 BCET (DDS) reveals the Auradu limestone in yellow tones; the silica-rich
basement and sands to the north appear in pale bluish tones; a narrow pink unit (�) is visible running west to north-
east and this colour indicates a lithology with a high clay content (the city is visible as a dark blue patch in the left
centre). (b) The silica index (b13/b10) thresholded and then stretched to reveal the silica-rich population representing
the Nubian sandstone formation, crystalline basement lithologies and desert sands in the north of this image. A slope
angle image (c) shows breaks in slope. The only clue to the Nubian sandstone lies in the topography. Between the pink
layer and the yellow limestone sits the Nubian sandstone (white area) but its spectral properties are so similar to other
silica-rich lithologies that it is indistinguishable from them. (d) Simple geological interpretation. The field of view is as
in Figure 22.16
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Figure 22.18d). These two indicators suggest either
that there is little or nowater stored in these alluvial
gravels, or that any water here is at a depth too great
to support any plant growth. There are other similar
pockets of alluvial material along the coast. Some
show distinct signs of vegetative growth and persis-
tence but these lie at too great a distance from
Hargeisa. The standard false colour composite
(Figure 22.18a) suggests that no verdant vegetation
exists in this area but a faint reddish colour in the

south-western corner of the area suggests some
upland plant growth. The NDVI shown in
Figure 22.18b suggests that some vegetation exists
on the central outcrops and on the basement massif
in the south-west but is absent from the alluvial
plains around these outcrops.

The wadis that meander across the alluvial plains
appear completely barren, supporting no vegeta-
tion, which suggests that any groundwater is too far
below surface level to support any plant growth. In

Figure 22.18 Waheen region: (a) 321 BCET DDS colour composite revealing the apparent absence of verdant vege-
tation; (b) NDVI indicating that some vegetation exists on the central outcrops and on the basement massif in the
south-west (NDVI values range between 0 and 0.1); (c) 942 BCET DDS false colour composite revealing central carbo-
nates in green tones, volcanics in very dark blues and reds, metasediments in brown tones and alluvial gravels in pale
pinks and yellows; and (d) ratio colour composite (R, iron oxides; G, silica content; B, carbonate/MgOH)
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either case, exploration for water in this region
would appear to be futile. The only vegetative
growth in this area is restricted to the south-west,
on an escarpment formed by the Aden volcanics
(magenta tones in Figure 22.18d).

The carbonates here are spectrally slightly differ-
ent from thoseof theAuradu (shown inFigures22.16
and 22.17), which are of Eocene age, and more
closely resemble the Jurassic limestones which out-
crop further to the north-east. They contain gypsi-
ferous units (the latter appear in cyan colours in the
942 composite image in Figure 22.18c); this and
their spectral character suggest that they are of
Jurassic age.

22.2.5 Summary

The phase 1 work allowed several areas to be
identified as having potential for more detailed
work. These were Bannaanka Dhamal, the Bokh
Valley and the Dibrawein Valley. Several smaller,
structurally controlled basins containing recent and
Jurassic sediments and alluvium were also identi-
fied but many proved too small and at too great a
distance from Hargeisa to represent any practical
potential.

The difficulty in distinguishing the Nubian sand-
stone formation from other quartz-rich materials
illustrates the need to look at other information.
Image processing can always provide at least a
partial answer, but something else will be necessary
to complete it and this may, again, involve
fieldwork.

The phase 2 work allowed the following to be
achieved:

. Confident discrimination of theAuradu limestone
outcrops in theHargeisa region and to the east and
west of Bannaanka Dhamal, which had not pre-
viously been possible.

. Enhancement of quartz-rich solid and drift de-
posits in the Hargeisa and Bannaanka Dhamal
regions.

. Enhancement of vegetation and soils at 1 : 50 000
scale.

. Confirmation of the nature and influence of
faulting on the outcrop geometry around the
Hargeisa region, which may affect local aquifer
existence.

Sadly, phase 3 of this work was never completed
because of the political unrest in this country. More
unfortunately, this project also revealed that the
main remit of finding bulkwater resources to supply
Hargeisa was highly likely to fail. This work sug-
gested that although potential aquifers exist, they
are either too small or too far from the city to
provide a viable economic supply. This project
does, however, serve to illustrate a sensible strategy
for other similar work.

Questions

Section 22.1

22.1 What are the principal sources and types of
uncertainty and bias in any result?

22.2 What is the next logical step in the refinement
of this project?

22.3 At the more detailed stage of observation,
which other criteria combination method(s)
would you choose? Critically evaluate your
choice(s).

Section 22.2

22.4 What recommendations would you make for
the development of this work, given no bud-
getary or political restrictions?

22.5 Is it physically possible to distinguish between
the different types of quartz (silica)-rich
materials encountered here, spectrally or
texturally? If so, how?

22.6 Having discriminated carbonates and basic
volcanics (i.e. materials which exhibit CO or
MgOH absorption in the SWIR), what other
potential criteria could be used to differentiate
between them?
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Part Four
Summary

Rather than simply repeat the key points from the preceding chapters, our intention here is to present more
of our personal views on essential image processing and GIS techniques for remote sensing applications.
Wemay sometimes reinforce key points that have already beenmade but, in doing so,we hope to convey our
thoughts in a wider sense, beyond the strictest technical aspects of the book.





23
Concluding Remarks

23.1 Image processing

1. Despite the fact that our presentation of essen-
tial image processing and GIS techniques is
technique driven, the use of these techniques in
their working context (within a remote sensing
project) should always be application driven. In
a real application project, effectiveness and
cost, rather than technical complexity, will
dictate your data processing and we find that
the simplest method is usually the best.

2. Image processing can never increase the infor-
mation provided in the original image data but
the use of appropriate image processing can
improve visualization, comprehension and
analysis of the image information for any par-
ticular application. There is no magic trick in
image processing which will create something
that does not already exist in the image, but it
can be magical when image processing makes
subtle things seem obvious and distinctive.

3. An image is for viewing! Always view the
image before and after image processing: there
are many fancy techniques to provide a so-
called ‘quantitative’ assessment of image qual-
ity but your eyes and brain are usually far more
accurate and more reliable.

4. Never blindly trust ‘black box’ functions in any
image processing system. These functions use
default settings and, for general purposes, are

convenient and usually produce quite good
results, but they are unlikely to produce the
best results in more specific applications and
are subject to unknown information loss. It is
far more important to understand the principle
of an image processing function than to master
the operation of the image processing software
package. In fact, only from a sound understand-
ing of the principles can you fully explore and
test the potential of an image processing system
to its limits.

5. Colours and grey tones are used as tools for
image informationvisualization. Digital images
can bevisualized in grey tones, true colour, false
colour and pseudo colour displays. When using
multi-spectral image data, beginning with sim-
ple colour composites is always recommended.

6. Our eyes are capable of recognizingmanymore
colours than grey levels and it is therefore sensi-
ble todisplayablackandwhiteimageasapseudo
colour image to get the most from it. Strictly
speaking, though, a pseudo colour image is no
longer a digital image but an image of symbols:
once the incremental grey levels are assigned to
different colours, the sequential, numerical rela-
tionship between these grey levels is lost.

7. No matter which techniques are applied, the
final step of displaying the resultant processed
image will always be contrast enhancement, to
stretch or compress the image to the dynamic
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range of the display device for optimal visuali-
zation. The histogram provides the best guid-
ance for all image contrast enhancement.

8. Digital images are often provided in unsigned
8 bit integer type but, after image algebraic
operations, the data type may change to real
numbers. Always check the actual value range
after such processing for appropriate display
and correct understanding of the physical
meaning of the derived images.

9. Image algebraic operations are very versatile.
Four basic arithmetic operations (þ , �, �, /)
enable quite a lot of image processing; more
complicated algebraic operations can, of
course, offer more but it is important not get
lost in an endless ‘number-crunching game’. In
using multi-spectral image data, spectral anal-
ysis of the intended targets is essential in guid-
ing your image processing towards effective-
ness and efficiency.

10. We usually achieve enhancement of target fea-
tures by highlighting them but enhancement
does not necessarily mean highlighting; it can
also be achieved by suppression. For instance, a
black spot on a white background is just as
distinctive as a white spot on a black back-
ground.On the other hand, in a complicated and
cluttered background, bright features are in-
deed more eye catching.

11. Filtering is introduced here as a branch of image
processing but it is, in fact, embedded in thevery
beginning of image acquisition. Any imaging
system is a filtering system: for instance, a
camera is a typical optical Fourier transform
system. A scene of the real world is an assembly
of spatial variation in frequencies from zero to
infinity. Infinitely high frequencies can only
be captured by lenses of infinite aperture. An
optical imaging system of limited physical size
can only offer a particular spatial resolution by
filtering out the detail corresponding to higher
frequencies than its aperture allows.

12. In being a neighbourhood process, filtering
enhances the relationships between the neigh-
bouring pixels but the relationship between a
filtered image and its original image is not
always apparent. An understanding of the prin-
ciple and functionality of a filter is necessary
for mastery of its use and for the proper inter-

pretation of its results. For instance, both gra-
dient and Laplacian are generally regarded as
high-pass filters but the functionality of these
two types is quite different.

13. The convolution theorem links the Fourier
transform, in the frequency domain, to convo-
lution, in the spatial domain, and thus estab-
lishes direct image filtering via a PSF (Point
Spread Function) without the computer-inten-
sive FTand IFT. In awider sense, convolution is
just one form of local window-based neigh-
bourhood processing tools. Many ‘box’ kernel
filters are based on this loose concept and
flexible structure but do not necessarily con-
form to the strict definition of convolution.

14. Our perception of colour is based on three
primaries, red, green and blue, but we do not
usually describe a colour as red¼ 250, green
200 and blue¼ 100. Rather, we would say that
a colour is a bright, pale orange and in this way
we are describing a colour based on its intensi-
ty, hue and saturation. Although colour percep-
tion is subjective and particular to an individu-
al, we can generally establish the relationship
between RGB and IHS from the RGB colour
cube model, which gives us elegant mathemat-
ical solutions of RGB–IHS and IHS–RGB
transforms.

15. The colour coordinate transformation based on
the RGB colour cube assumes that our eyes
respond equally to the three primary colours,
when in fact they respond differently to each
one. For the same intensity level, we generally
feel that green is much brighter than blue and
red. This is because our eyes are most sensitive
to the intensity variation of green despite the
fact that our brains receive strong stimulation
from red and we can see red much farther away
than the other two primaries. In a false colour
composite of the same three bands, the visual
effect may, however, be quite different. Any
feature displayed in red appears far more obvi-
ous and distinctive than if it is displayed in
green or blue. Sometimes, simply by changing
the colour assignment of a colour composite
image, you may visually enhance different
ground objects.

16. The saturation of a colour is generally regarded
as the purity of a colour but the actual physical
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meaning of colour purity is rather vague and
unclear; there are several different definitions
of saturation as a result. According to the RGB
colour cube model, saturation is not indepen-
dent of intensity; it is the portion of white light
in a colour. A large portion of white light in a
colour produces low saturation. The concepts
and calculation formulae of saturation in this
book are given following this logic. Some older
definitions of colour saturation ignore the de-
pendency of saturation on intensity; they are
not correct for the colour coordinate transfor-
mation based on the RGB colour cube.

17. We have introduced three image fusion tech-
niques: intensity replacement (via the
RGB–IHS transformation), the Brovey trans-
form and SFIM. All of these can be used to
improve the spatial resolution of colour com-
posites but theRGB–IHS andBrovey transform
techniques are subject to colour (spectral) dis-
tortion if the total spectral range of the low-
resolution colour composite is different from
that of the high-resolution image. SFIM is a
spectral preservation data fusion technique
which introduces no colour distortion, although
itsmerits are somewhat offset by its demand for
precise image co-registration, a problem which
can be resolved by using the recently developed
optical-flow-based, pixel-to-pixel image co-
registration technique.

18. Principal component analysis achieves the re-
presentation of a multi-spectral (or, more gen-
erally, multi-variable) image dataset in an or-
thogonal coordinate system defined by the axes
of its data cluster ellipsoid. Mathematically,
PCA performs coordinate rotation operations
from the covariance matrix of the data cluster.
A PC image is a linear combination of original
image bands based on its corresponding eigen-
vector of the covariance matrix. Obviously, the
data cluster of a multi-spectral image may not
formulate a perfect ellipsoid and the PCA is
therefore a statistical approximation.

19. PCA produces n independent PC images from
m (m� n) correlated bands of a multi-spectral
image. In most image processing software
packages, the PCA function produces exactly
the same number of PCs as the image bands
rather than fewer. The point here is that the

high-rank PCs contain little information. For
the six reflective spectral bands of a TM/
ETMþ image, the PC6 image contain nearly
no information but random and striping noise.
The first five PCs thus effectively represent the
image information from all six reflective bands
and, in this sense, n<m. On the other hand,
dropping any an image band may considerably
change the information.

20. The idea of DS (Decorrelation Stretch) is to
reduce the inter-band correlation of three bands
for colour composition by stretching the data
cluster to make it spherical rather than elongat-
ed. As a result, a colour composite with richer
and more saturated colours but without hue
distortion can be produced for visual analysis.
DS can be achieved via either saturation stretch
(IHSDS) or PC stretch (PCADS). We have
proved that saturation stretch reduces inter-
band correlation while PC stretch increases
saturation. DDS (Direct Decorrelation Stretch)
is the simplest and most effective technique for
DS, which stretches saturation via a reduction
of the achromatic component of colour without
the involvement of forward and inverse
transformations.

21. Instead of performing the coordinate rotation
from the covariance matrix, as PCA does, the
image coordinate system of the original image
bands can be rotated in any direction by a
matrix operation. The key point is to make a
rotation that enhances the image information of
specific ground object properties. The tasselled
cap transformation is one such coordinate ro-
tation operation; it produces component images
representing the brightness, greenness and wet-
ness of a land surface.

22. Classification is a very broad subject. This book
covers only a small part of this subject, focused
onmulti-variable statistical classification. Both
unsupervised and supervised multi-variable
statistical classifications of multi-spectral
images involve the feature space partition of
image data clusters on the basis of particular
dissimilarity measures (classifiers or decision
rules); these do not involve the spatial rela-
tionships among neighbouring pixels. Multi-
spectral images can be spatially segmented into
patches of different classes according to
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particular properties and spatial continuity. This
type of classification is referred to as image
segmentation and it is not covered by this book.
Hybrid multi-variable statistical classification
in combination with image segmentation is also
a valuable approach. The neural network is
another branch of classification characterized
by its self-learning ability, general applicability
and great computational inefficiency.

23. The ultimate assessment of the accuracy of the
image classification of ground objects must be
based on ground truth, even though the ground
truth data themselves can never be 100% accu-
rate. Facing such a paradox and the practical
difficulties of ground truth data collection,
several image-data-based statistical methods
have been proposed and, among them, the
confusion matrix is the most popular. The
confusion matrix method produces a user’s
accuracy and a producer’s accuracy, as mea-
sures of the relative assessment of classification
accuracy. These measurements are actually
more applicable to the assessment of classifi-
cation algorithm performance than to the indi-
cation of true classification accuracy.

24. Image co-registration and image rectification
are closely related but different issues. Image
rectification is used to rectify an image in
compliance with a particular coordinate sys-
tem. This can be done by co-registering the raw
image to a map or to a geocoded image. In the
second case, the rectification is achieved via
image co-registration. Image co-registration is
used tomake two imagesmatch one another but
not necessarily any map projection or coordi-
nate system. Image warping based on a poly-
nomial deformation model derived from
ground control points (GCPs) is one of the
most widely used techniques for co-registration
between two images or between an image and a
map. The technique is versatile in dealing with
images that have significantly different scale
and distortion but, since it is based on a defor-
mation framework or mesh, it does not achieve
accurate co-registration at every image pixel. A
different approach is pixel-to-pixel co-registra-
tion based on accurate measurements of dis-
placement between two images, at every pixel
position. This can be achieved by local feature

matching techniques, such as phase correlation.
The technique ensures very high-quality
co-registration but its application is limited by
its low tolerance to differing acquisition condi-
tions between the two images (e.g. scale, illu-
mination angle, spatial features and physical
properties).

25. We briefly introduced InSAR technology since
it has become a very important tool in Earth
observation remote sensing. InSAR data pro-
cessing is a significant subject in its own right
but it shares common ground with image pro-
cessing, in optimizing the visualization of in-
terferograms and analysing coherence images.
For instance, ratio coherence is a typical image
enhancement technique for separating spatial
decoherence and temporal decoherence.

23.2 Geographical information
systems

1. The fundamental building blocks of all GISs
are the data structures – how we encode our
information right from the start can have far-
reaching consequences when we arrive at the
more in-depth analytical stages of the work.
The old adage of ‘rubbish in, rubbish out’,
while seeming rather crude, can hold true. You
must make sure that you choose the right data
structure and that it is sensibly and intelligently
structured for your needs. Youmust also ensure
that it is captured as accurately as possible. At
this stage, thinking about what you intend to do
with the data will help when deciding how to
structure them; try to think several steps ahead.
From the basic units of point and pixel, every-
thing else grows.

2. For raster data we must consider the need to
describe adequately the spatial variability of a
phenomenon, bearing in mind the effect of
spatial resolution and data quantization on
everything that we do beyond this step. On the
other hand, we do not want to waste space and
so we try to avoid redundancy wherever possi-
ble; these days, we need worry slightly less
about this since increasingly efficient (almost
lossless) data compression techniques are here
to stay.
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3. Consider very carefully whether you need to
generate full topology in your vector dataset
(remember the advice about thinking ahead of
the analytical stages). If you do, you will need
to do this from the start or face duplicating
effort later on. On the other hand, you may not
need it at all, depending on what you intend to
do with your data, in the light of new, intelli-
gent, vector data structures and fast computers.

4. You may not realize it at the start but there will
probably be many instances when you need to
convert data between raster and vector formats,
and vice versa. Clearly there are implications
for the methods we choose and kind of data
involved.When you domake such conversions,
it is important to pay attention to the detail at
pixel level, so that you are fully aware of what
happens to your data.

5. It is impossible to underestimate the impor-
tance of georeferencing – it is what holds your
GIS together! If you are at all concerned about
the accuracy and precision of your results, then
take care to understand your coordinate space
(datum and projection) and the effect that it has,
regardless of the application, whether it be
mapping, measuring or planning. Seemingly
small differences on the screen could translate
to sizeable errors on the ground. Learn how to
use your equipment properly and understand
the limitations of the device and what it tells
you. Understanding the implications of getting
it wrong should be a good incentive but it is
better that you learn first!

6. Also, bear in mind the spatial resolution of any
raster data you are working with and the effect
this has on the precision and accuracy of the
data you are recording or encoding. Also
consider where in the world you are working
and how this may affect your processing or
calculations. For instance, consider what hap-
pens to the area represented by a square image
pixel when you transform a raster dataset
between polar and planar coordinate systems
at high latitudes. The pixel will no longer be
square and the data may need to be resampled,
and may be resampled in the background
without your being aware of it; the data values
will be changed as a result. If the raster data
have been generated by interpolation from

point sample data, make sure the sample data
are transformed from polar to planar coordi-
nates before performing the interpolation, not
after, to avoid this problem. Following on from
this, it is advisable to ensure that all raster
datasets input to your model conform to the
same coordinate system and spatial resolution
at the start; in fact, many software packages
demand this.

7. Operations represent the greatest area of over-
lap between image processing and GIS. These
are our principal tools for manipulating raster
and vector data. The map algebra concept was
born out of raster processing but can also be
applied to vector data. In fact there are many
parallel operations; their behaviour may be
different, because of the differing data struc-
tures, but the principles and end results are the
same. Sometimes the combination of two raster
operations can be achieved using one vector
operation; in such situations, it may be better to
use the vector route to achieve the result but this
will only be the case for categorical data. Once
again, understanding the principles of the pro-
cess at pixel (and point) level will help you to
grasp the overall meaning, relevance and reli-
ability of the result. The fundamental link with
image processing in most of these processes
should always be borne in mind; if in doubt,
refer back to Chapter 14.

8. The use of the null (NoData) value is extremely
important, so being aware of its uses and lim-
itations will help to ensure that you achieve the
right effect. Boolean logic is extremely useful
in this and other contexts; it should be used
wisely and carefully in conjunction with zeros
and nulls.

9. Reclassification is probably one of the most
useful tools in spatial analysis, for the prepara-
tion of both raster and vector data. Understand-
ing the nature of the input data value range and
type, for example via the histogram, is crucial.
We stress the importance of considering the
data type of input and output layers (whether
integers or real numbers, for instance, as point-
ed out in Section 23.2, point 8), especiallywhen
using any arithmetic or statistical operations.
After all, the output values should make rea-
sonable sense.
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10. We find that the geometric or attribute char-
acteristics of one layer can be used to control
operations performed on another, and so can be
used to influence the path of the analysis in an
indirect way, and that this can be done using
raster data, vector data or both. Remember also
that operations do not necessarily have to be
arithmetic or involve calculations to change the
attributes and/or geometric properties of fea-
tures, as is the case with reclassifications and
mathematical morphology.

11. Geostatistics is an extremely broad subject area
which grew out of mineral exploration but now
is applied in a great many fields. The key point
of this topic is good data understanding: you
need to understand the nature of the data at the
start, i.e. through the use of histograms and
semi-variograms, and through knowing how
the data were collected and processed before
you received them. It is far too easy to proceed
without appreciating the characteristics of the
dataset, such as the possibility of hidden trends
in the data, the presence ofmultiple statistically
independent populations, and/or the effects of
spatial autocorrelation.

12. The next step is the choice of interpolation
method and this can be mind boggling. The
choice should be made according to the quan-
tity, distribution and nature of your data, and on
your intended use of the result, rather than on
the ease of use of the tools at hand. In the end,
you may not have a choice but you must
understand these things first, if you are to make
sense of and judge the quality of the result.
Sometimes the most sophisticated method may
be a waste of effort or may give meaningless
results. On the other hand, using too simple a
method may smooth out important detail or
may not ‘honour’ the input data values. So it is
important to consider your priorities and the
intended use of the result, in choosing your
approach.

13. The exploitation of surface data is another area
of strong overlap with image processing, in
image convolution filtering. In image proces-
sing, we use the neighbourhood process of
filtering to enhance spatial image textures, for
instance, whereas here we are trying to extract
quantitative measures of surface morphology,

measures which describe the 3D nature of that
surface. Surfaces are extremely useful and
powerful in a number of contexts; there is a
lot more to it than merely visualizing them in
three dimensions. Having said that, effective
visualization can be achieved in two dimen-
sions as well as three; GIS is effective in
communicating information using either of
these.

14. Do not forget that surfaces can be described by
both raster and vector, so once again try to think
about the intended use of the surface before you
decide what kind of data you need to use.
Surfaces are in themselves a rich data source
from which several other valuable attributes
(parameters) can be extracted. We give a selec-
tion of surface parameters that are particularly
useful to geoscientists of all kinds, such as
slope, aspect and curvature, describing how
they are calculated as well as how they might
be used. We stress the very direct link between
the extraction of these surface parameters and
their image processing equivalents, so if you
need to understand their derivation from first
principles more fully, then we refer you to
Chapter 4.

15. There are also many potential sources of sur-
face data and these are increasing in number
and detail all the time. We provided a list of
DEM data sources in Chapter 16 and some
online resources, including the URLs of several
useful sites for public data distribution, are
listed in Appendix B.

16. Decision making represents another extremely
broad subject area and one which extends well
beyond digital mapping and the processing of
spatial information; it is a kind of ‘cautionary
tale’ which is relevant to all kinds of digital
spatial analysis. The uncertainty we refer to
affects everything we do in GIS and we need to
be very aware of both the strengths and the
limitations of our data, objectives and methods
(and how they affect one another). This is the
key to the successful application of the right
kind of decision rules, to increasing the likeli-
hood of making ‘good decisions’ and thus the
reliability of the result, and to gaining the
maximum reduction of ‘risk’ associated with
a particular outcome.
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17. Uncertainty creeps into our analysis in several
different ways and in different forms, so we
should try to understand the different situations
in which these might occur, to help us handle
the data correctly in the next stage of the
analysis, for instance in constructing our deci-
sion rules and then in choosing the most appro-
priate multi-criteria combination method.
There are several ways of dealing with uncer-
tainty in spatial analysis; you may need to use
some or all of them. Being aware of the poten-
tial problem of uncertainty and doing some-
thing about it is, in general, more important
than the particular method you choose to deal
with it.

18. Multi-criteria analysis is an extremely broad
topic, so Chapter 18 could easily have been
expanded into three or four separate and
weighty chapters but we felt that this would
be more detail than was necessary in this book.
We have therefore tried to give an overview of
the potential methods, listed broadly in increas-
ing complexity, and describing their strengths
and weaknesses, to enable you to select the best
methods for your own case, since the choice is
varied. Data preparation is still the most vital
step, and one which will require the revision of
all the preceding chapters, especially while you
are considering the structure of your ‘model’
and selecting input evidence layers, the values
they contain and the way they area scaled,
before you proceed to the combinationmethod.

19. The most appropriate method of layer combi-
nation for your situation will depend on the
nature of the case, which will then dictate
the set of decision rules; these will depend on
the quantity and quality of the data and on
your understanding of the problem. In com-
plex problems that involve natural phenome-
na, it is highly likely that the input evidence
may not all contribute equally to the outcome.
Hence you may need to rank and weight the
inputs or you may need to control the influ-

ence they have within the model you use.
Something that might not be apparent at the
start is the possibility that all the evidence may
not contribute in the same way towards the
problem; in other words, the absence of some-
thing may be as significant as the presence of
something else.

20. Such sophisticated tools as are available today
mean that a highly complex and impressive
result is relatively easy to produce. Being able
to repeat, justify and interpret that result is even
more important, so some method of validation
becomes increasingly important too. One last
important thing to remember in this context is
that there is no absolutely correct method for
combining multiple criteria in spatial analysis
but that, for any particular case, there is usually
a most appropriate method; the world is indeed
a fuzzy place.

23.3 Final remarks

There is clearly considerable common ground and
synergy between the two technologies of image
processing and GIS, and each one serves the other
in some way. In our clear explanations in this book,
we hope to have gone someway to demystifying the
techniques which may previously have seemed
inaccessible or a little daunting. These are all very
useful tools which we have learned to use over the
years and, from our collective experience and
knowledge, into which we have also tried to inject
some common sense and guidance wherever
possible.

It is our intention that this bookwill serve as a key
to the door of the active and integrated research
fields of image processing and GIS and their ap-
plications within remote sensing, and this is whywe
have used the word ‘essential’ in the title of the
book. We hope that the book is easy to read and to
use, but how useful it will be depends entirely on the
readers’ desire to explore.
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Appendix A
Imaging Sensor Systems and Remote
Sensing Satellites

The key element in remote sensing technology is
the sensor. A sensor detects and quantitatively
records the electromagnetic radiation (EMR) from
an object remotely; hence the term �sensing�. For
an object to be sensed, it must radiate energy
either by reflecting the radiation impinging on it
from an illumination source, or by �shining� by
itself. If a sensor provides its own illumination
source it is an active sensor otherwise, if it
depends on an independent illumination source,
such as the Sun, or the radiation from the target
itself, such as the Earth�s thermal emission, it is
then a passive sensor. Synthetic aperture radar
(SAR) is a typical active sensor system as it sends
microwave radiation pulses to illuminate the tar-
get area and receives the returned signals to
produce an image. In contrast, the most common-
ly used panchromatic and multi-spectral optical
sensors are typical passive sensors. A camera can
become an active sensor when it is used with flash
light in the dark. In this case, the camera provides
its own light source to illuminate the object and
meanwhile takes a picture.

A.1 Multi-spectral sensing

As a passive sensor, a multi-spectral imaging sys-
tem images the Earth by recording either the

reflected solar radiation or the emitted radiation
from the Earth. The Sun is the primary illumination
source for the Earth. For Earth observation remote
sensing, most passive sensor systems operate under
solar illumination during the daytime; such systems
range from aerial photography to satellite-borne
multi-spectral scanners. These sensors detect re-
flected solar energy from the land surface to pro-
duce panchromatic and multi-spectral images. Fea-
tures in these images are mainly described by two
types of information: spatial patterns (e.g. topo-
graphic variation) and spectral signatures. Ignoring
the minor factors, we can present such an image as

MrðlÞ ¼ rðlÞEðlÞ ðA:1Þ
where Mr(l) is the reflected solar radiation of
spectral wavelength l by the land surface, or an
image of spectral band l, E(l) is irradiance, that is
the incident solar radiation energy upon the land
surface, while r(l) is the reflectance of the land
surface at wavelength l.

E(l) is effectively the topography, as determined
by the geometry of the land surface in relation to
illumination. The spectral reflectance, r(l), is a
physical property that quantitatively describes the
reflectivity of materials on the land surface at
wavelength l. The selective absorption and reflec-
tion by a material result in variation of spectral
reflectance in a spectral range, giving a unique
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signature for this substance. It is therefore possible
to determine the land cover types or mineral com-
positions of the land surface based on spectral
signatures using multi-spectral image data. Reflec-
tive spectral remote sensing is one of the most
effective technologies for studying the Earth�s sur-
face as well as that of other planets.

TheAmerican Landsat satellite family, Thematic
Mapper (TM) andEnhanced ThematicMapper plus
(ETMþ ), and the French SPOT satellite family
HRV (High-Resolution Visible) are the most suc-
cessful Earth Observation systems, providing
broadband multi-spectral and panchromatic image
data of global coverage. As shown in Table A.1, this
type of sensor systemoperates in thevisible spectral
range with bands equivalent to three primary col-
ours: blue (380–440 nm), green (440–600 nm) and
red (600–750 nm); as well as in the near-infrared
(NIR) (750–1100 nm) and shortwave-infrared
(SWIR) (1550–2400 nm) ranges. The number of
bands and the band spectral width in the VNIR
(Visible Nearer Infrared) and SWIR spectral ranges
are dictated by atmospheric windows and sensor
design. For instance, the spectralwidth of the SWIR
bands needs to bemuchwider than the visible bands
if the same spatial resolution is to be achieved. This
is the case for TM/ETMþ bands 5 and 7, because
the solar radiation in the SWIR is significantly
weaker than that in the visible spectral range.

In general, the term �broadband� means that the
spectral range is significantly wider than a few
nanometres, as in the case of the hyperspectral
sensor system described later. Broadband reflective
multi-spectral sensor systems are a successful com-
promise between spatial resolution and spectral
resolution. With relatively broad spectral bands, a
sensor system offers reasonable spatial resolution
with high SNR and, while operating in a wide
spectral range from VNIR to SWIR, can provide
images of multi-spectral bands enabling the iden-
tification of major ground objects and the discrimi-
nation of various land cover types. With dramatic
improvements in sensor technology, from mechan-
ical scanners to push-broom scanners, and to digital
cameras, the spatial resolution of broadband multi-
spectral imagery is improving all the time. For Sun-
synchronous near-polar orbiting satellites, spatial
resolution has been improved from 80m (Landsat
MSS) in the 1970s to a few metres and even sub-

metres on current systems, as shown by the exam-
ples in Table A.2.

The VNIR spectral range is used by nearly all the
broadband reflectivemulti-spectral sensor systems.
This spectral range iswithin the solar radiation peak
and thus allows the generation of high-resolution
and high-SNR images. It also covers diagnostic
features of major ground objects, for instance:

. Vegetation: Minor reflection peak in green,
absorption in red and then significant reflection
peak inNIR. The phenomenon is often called �red
edge�.

. Water: Strong diffusion and penetration in blue
and green and nearly complete absorption in
NIR.

. Iron oxide (red soils, gossans, etc.): Absorption
in blue and high reflectance in red.

Many satellite sensor systems choose not to use
the blue band, to avoid the very strong Rayleigh
scattering effects of the atmosphere that make an
image �hazy�. A popular configuration is to offer
three broad spectral bands in green, red and NIR,
such as the case for SPOT, and themost recent high-
spatial-resolution spaceborne sensors (Tables A.1
and A.2).

The SWIR spectral range is regarded as the most
effective for lithological and mineral mapping be-
cause most rock types have high reflectance in the
range 1.55–1.75mm and because hydrous (clay)
minerals (often products of hydrothermal alter-
ation) have diagnostic absorption features in the
spectral range 2.0–2.4 mm. These two SWIR spec-
tral ranges correspond to Landsat TM/ETMþ bands
5 and 7, and to ASTER band 4 and bands 5–9 (Table
A.1). SWIR sensor systems are technically more
difficult and complicated because the SWIR detec-
tors have to operate at very low temperatures, which
therefore require a cooling system (a liquid nitrogen
coolant or a cryo-cooler) to maintain the detectors
at about 80K.

With six broad reflective spectral bands, Landsat
TM has provided the best spectral resolution of
the broadband sensor systems for quite some time.
The six broad reflective spectral bands are very
effective for the discrimination of various ground
objects but they are not adequate for the specific
identification of rock types andmineral assemblages
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(of the hydrated type mentioned above, which
are pathfinders for economic mineral deposits).
Herein lies the demand for a sensor system with a
much higher spectral resolution, at a bandwidth
of a few nanometres, to detect the very subtle
spectral signatures of materials on the land sur-
face. This demand has led to the development of
hyperspectral sensor systems.

ASTER (Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer), a push-broom
scanner for VNIR and SWIR bands, represents a
�transitional� sensor system, somewhere between
broadband multi-spectral and hyperspectral nar-
rowband sensing. It is an integrated system of three
scanners: a VNIR push-broom scanner with three
broad spectral bands; an SWIR push-broom scan-
ner with six narrow spectral bands; and a TIR
(Thermal Infrared) across-track mechanical scanner
with five thermal bands (Table A.1). The system

combines good spatial resolution in theVNIRbands
with high spectral resolution in SWIR and multi-
spectral thermal data which are very useful in
geological applications. The three VNIR bands of
15m resolution are adequate for distinguishing
broad categories of land surface such as vegetation,
water, soils, urban areas, superficial deposits and
general rock outcrops while the six narrow SWIR
bands of 30m resolution have the potential to map
major mineral assemblages (rock forming and al-
teration) and lithologies. Another unique advantage
of ASTER is that it has along-track stereo capa-
bility. The VNIR scanner has a backward-viewing
telescope to take NIR images in addition to its nadir
telescope for the three VNIR bands. Thus nadir and
backward-viewing NIR images are taken simulta-
neously, forming along-track stereo image pairs.
These pairs enable generation of DEM (Digital
Elevation Model) data.

Table A.2 Some satellite-borne VHR (Very High-Resolution) broadband sensor systems. Hyp¼Hyperspectral

Satellite Launch time and status

Spatial resolu-
tion (m) Spectral range (mm)

Pan MS Hyp. Pan MS Hyp.

GeoEye1 Sept. 2008 0.41 1.64 — 0.45–0.80 0.45–0.51 —
In validation 0.51–0.58

0.655–0.69
0.78–0.92

WorldView-1 Sept. 2007 0.5 — — 0.45–0.90 — —
In operation

Ikonos 2 24 Sept. 1999 1 4 — 0.45–0.90 0.45–0.53 —
In operation 0.52–0.61

0.64–0.72
0.77–0.88

Quickbird 18 Oct. 2001 1 4 — 0.45–0.90 0.45–0.52 —
In operation 0.52–0.60

0.63–0.69
0.76–0.89

Orbview-3 26 June 2003 1 4 — 0.45–0.90 0.45–0.52 —
In operation 0.52–0.60

0.625–0.695
0.76–0.90

Orbview-4 Failed to orbit, Sept. 2001 1 4 8 0.45–0.90 0.45–0.52 0.45–2.50
0.52–0.60 200 bands
0.625–0.695
0.76–0.90
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Thus far, we have not specifically mentioned the
panchromatic band image. We can regard panchro-
matic imagery as a special case of broadband reflec-
tivemulti-spectral imagerywith awide spectral range,
covering a large part of the VNIR spectral range,
which can achieve a high spatial resolution.

A.2 Broadband multi-spectral
sensors

Aerial photography, using a large-format camera, is
the earliest operational remote sensing technology
for topographic surveying. Spaceborne remote
sensing, in Earth Observation, began on Landsat-
1 with its MSS (Multi-Spectral Scanner) and RBV
(Return Beam Vidicon) camera, which was
launched on 23 July 1972. These instruments cap-
tured and transmitted electronic images of the
Earth; these images were then distributed to users
in a digital format as digital image data for the first
time. The concept and technology of digital imag-
ery gave birth to satellite remote sensing. An Earth
Observation satellite images the surface continu-
ously from orbit and sends the images back elec-
tronically to the receiving stations on the ground.

The development of sensor technology is now
mainly focused on improving spatial resolution and
spectral resolution. For a given sensor system, its
spatial resolution is dictated by the minimal energy
level of electromagnetic radiation (EMR) that can
make a signal distinguishable from the electronic
background noise of the instrument, i.e. the dark
current. This minimum energy of EMR is propor-
tional to the product of radiation intensity over a
spectral range, IFOV (Instant Field Of View) and
the dwell time.

The IFOV is decided by the spatial sample
density of an optical sensor system and it deter-
mines the pixel size of the image. For a given dwell
time (equivalent to exposure time) and spectral
range, the larger the IFOV, the more energy will
be received by the sensor but the spatial resolution
will be lower. To improve spatial resolution, the
IFOV must be reduced, but to maintain the same
energy level, either the dwell time or spectral
range, or both, must be increased. When a sensor,
which has a dwell time fixed by the sensor�s design
and platform orbit parameters, receives reflected

solar radiation from the Earth, it may record the
energy in a broad spectral range as a single image,
that is a panchromatic image, at a relatively high
resolution. It may also split the light into several
spectral bands and record them separately in sev-
eral images of narrower spectral range, that is
multi-spectral images. In this case, the energy that
reaches the CCDs of each narrow spectral range is
significantly weaker than in the panchromatic
mode. To achieve the same energy level, the only
solutions are to increase the size of the IFOVor to
reduce spatial resolution. This is the reason that
nearly all optical imaging systems achieve higher
resolution in their panchromatic band than in the
multi-spectral bands (Tables A.1 and A.2). For
instance, the SPOT-1–3 HRV panchromatic band
has 10m resolution while XS (multi-spectral)
bands have 20m resolution.

The only other way to improve the spatial resolu-
tion in both panchromatic and multi-spectral imag-
ery is to increase the dwell or exposure time.This has
been an important consideration in sensor design,
although the capacity for increasing the dwell time is
very limited, for both airborne and spaceborne re-
mote sensing, since the image is taken fromamoving
platform: long exposure time will blur the image.

A.2.1 Digital camera

With few exceptions, passive sensor systems are
essentially optical camera systems. As shown in
Figure A.1, the incoming energy to the sensor goes
through an optical lens and is focused onto the rear
focal plane of the lens where the energy is recorded
by radiation-sensitive media or a sensor device,
such as film or CCD (Charged Coupled Device).

A digital camera is built on a full 2D CCD panel;
it records an image through a 2DCCDpanel linking
to a memory chip. With the advances in multi-
spectral 2D CCD technology, the new generation
of passive sensors will be largely based on the
digital camera mechanism that takes an image in
an instantaneous frame rather than scanning line by
line. The consequence is that the constraints on
platform flight parameters can be relaxed, image
resolution (spatial and spectral) can be improved
and image geometric correction processing can be
streamlined.
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A.2.2 Across-track mechanical scanner

The early design of spaceborne passive sensor
systems was constrained by the technology of the
primary sensor unit, the CCD. The mechanical
scanner has been the ideal solution to achieve
multi-spectral imaging at relatively high resolu-
tion, since it is based on a simple mechanical
device which uses only a few CCDs. Figure A.2
contains a schematic diagram showing the princi-
ple of an across-track mechanical multi-spectral
scanner. The optical part of a scanner is essentially
a camera but the image is formed pixel by pixel,
scanned by a rotatingmirror, and line by line, as the
platform (aircraft or satellite) passes over an area.
The range of a scan line is called the swath. The
light reflected from the land surface reaches the
rotating mirror that rotates at a designated speed
and thus views different positions on the ground
along a swath during its rotation scan cycle. The
rotating mirror diverts the incident light through
the scanner optics and then the light is dispersed
into several spectral beams by a spectral splitting
device (a prism or interference filters). The multi-
spectral spectral beams are then received by a
group of CCDs which sample the light at a regular
time interval. By the time the scanner finishes
scanning one swath, the satellite or aircraft has
moved forward along its track to the position for
the next scan.One scan swath can be a single image

line or several image lines depending on the sensor
design and the synchronization between flying
speed, swath width, altitude of the satellite or
aircraft and required image resolution. In this way,
a scanner can achieve a very large image using
limited CCDs; although mechanically rather com-
plex, a scanner relies less on the CCD technology.

The MSS, with four spectral bands onboard
Landsat-1–3, is a classical example of amechanical
scanner. It is a one-way scanner that scans in one
direction of mirror rotation only, and with an empty
return run. Such a design makes compensation for
the Earth�s rotation easier, since the Earth rotates a
fixed distance along the swath direction in each
scanning cycle. The inactive return runs waste
valuable time for imaging and cause a shorter dwell
time in the active runs, thus reducing image spatial
resolution. The TM/ETMþ , onboard Landsat-4–7,
is a significantly improved scanner with six reflec-
tive spectral bands and one thermal band (Table
A.1). It is a two-way scanner that scans in both
directions. So, for the samewidth of swath, the two-
way scan allows the mirror to rotate more slowly,
thus increasing the dwell time of the CCDs at each
sample position. This configuration improves both
spatial and spectral resolution. To compensate for
the Earth�s rotational effects, the geometric correc-
tion for TM/ETMþ is more complicated than that
for MSS because one scan direction is for, and the
other against, the Earth�s rotation.

Lens 

Imaged area 

Film or CCDs 

f – Focal length 

Figure A.1 Basic structure of an optical sensor system
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A.2.3 Along-track push-broom scanner

With rapid developments in CCD technology, a
more advanced push-broom scanner has become
dominant in broadbandmulti-spectral sensor design
since the successful launch of SPOT-1 on 22 Febru-
ary1986.As shown inFigureA.3, thekeydifference
between a push-broom scanner and a mechanical
scanner is that it does not have amechanical part for
pixel-by-pixel scanning along the swath direction.
Instead of a rotating mirror, a push-broom scanner
has a steerable fixed mirror to enable the sensor to
image its swath either at nadir or off nadir. A line
array panel of CCDs covering the whole imaging
swathismountedat therearof thespectraldispersion
device.Thepush-broomscannerimagesanarea, line
by line, along the track when the sensor platform (a
satelliteoranaircraft)passesover, just likepushinga
broom forward to sweep the floor.

Since one swath of image is generated simulta-
neously, the dwell time for each CCD representing
an image pixel can be as long as a whole swath

scanning time for a mechanical scanner. With
significantly increased dwell time, a push-broom
scanner achieves much higher resolution. Based on
advanced CCD technology, the push-broom scan-
ner is also much simpler than the mechanical
scanner in structure, and the data geometric cor-
rection is less complicated. With no mechanical
parts, the system is robust and reliable. The num-
ber of CCDs in the line array, in the swath direc-
tion, decides the size and the resolution of the
image data generated. For instance, the SPOT
HRV has 6000 CCDs per line for its panchromatic
band and 3000 CCDs per line for its multi-spectral
bands. The system therefore produces panchromat-
ic images of 6000 pixels per line at 10m resolution
and multi-spectral images of 3000 pixels per line at
20m resolution.

The push-broom design also allows greater
flexibility in manoeuvring the sensor to point
at off-nadir positions. As shown in Figure A.3,
unlike a mechanical scanner, the mirror fixed in
front of the lens is not for scanning but to direct

Figure A.2 A schematic illustration of an across-track mechanical multi-spectral scanner
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the incident light to the optics. It is steerable
with several fixed angle positions. At different
angles, the mirror directs the sensor system to
view and image different scenes, off nadir, along
the satellite�s track.

A.3 Thermal sensing and thermal
infrared sensors

A thermal sensor is also passive but the radiation
energy that thesensor receiveshasbeenemitted from
the Earth�s surface rather than reflected from it.
Thermal sensing does not therefore need an illumi-
nationsource since the target itself is the illumination
source. TheEarth�s surface canbe approximated as a
black body of 300K and, using Wien�s law, we can
calculate that the radiation peak of the Earth is at
about 10mm. In this spectral range, radiation can be
sensed and measured by temperature rather than
visible brightness; it can therefore be called thermal
sensing. Different natural materials on the land
surface have different thermal radiation properties

and thermal sensors are therefore useful tools for
geological and environmental studies.

There are quite a few airborne TIR sensor sys-
tems, for example the thermal infrared multispec-
tral scanner (TIMS), with six bands in the
8.2–12.2mm spectral region, was developed in
1982. Landsat TM and ETMþ have a broad ther-
mal band at a wavelength of 10.4–12.5mm. ASTER
onboard the Terra-1 satellite comprises a multi-
spectral thermal system with five narrow thermal
bands as listed in Table A.1.

In general, a broadband TIR sensor operating in
the 8–14mm spectral range images the radiation
temperature of the land surface while the narrower
band multi-spectral thermal image data present the
thermal spectral signatures of materials of the land
surface. It is important to know that daytime ther-
mal images are fundamentally different from those
acquired at night. Daytime thermal images are
dominated by topography, as governed by the ge-
ometry between slopes and solar radiation, in the
same way as in reflective multi-spectral images,
whereas the pre-dawn night thermal images, which

Figure A.3 A schematic diagram of an along-track push-broom multi-spectral scanner
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are nearly solely determined by emission from the
Earth�s surface, show better the thermal properties
of ground materials.

In both systems, TM/ETMþ and ASTER, the
spatial resolution of thermal bands is significantly
lower than that of the reflective multi-spectral
bands, as shown in Table A.1. One reason is that
the interaction between thermal energy (or heat)
and the atmosphere is more complex than in the
case of VNIR and SWIR energy. Heat can be
transmitted in the air not only by radiation but also
by air circulation. Secondly, the solar radiation
impinging on the Earth in the TIR spectral range
and the direct thermal emission from the Earth are
both very weak compared with the energy intensity
of the Earth�s reflected solar radiation in the VNIR
and SWIR spectral ranges.

So far,most thermal sensors are of the across-track
mechanical scanner typeas shown inFigureA.4.The
major difference of a thermal scanner from a reflec-
tive multi-spectral scanner is that it needs a cooling
system to maintain the TIR detector at very low
temperature for maximum sensitivity. For instance,
the thermal sensor of the Landsat TM is surrounded
by liquid nitrogen at 77K and stored in an insulated
vessel. In theASTERsystem, a cryo-cooler is used to
maintain the TIR detectors at 80K. A black body
plate is used as an onboard calibration reference that
is viewed before and after each scan cycle, thus
providing an estimate of instrument drift. This is
essential for maintaining the accuracy and consis-
tency of a TIR instrument. The temperature sensi-
tivity of a modern TIR sensor system can be as high

as 0.1K. To represent the sensitivity fully, many
thermal IR sensors use 10–12 bit quantization to
record data, such as ASTER multi-spectral thermal
band images which are 12 bit integer data.

A.4 Hyperspectral sensors
(imaging spectrometers)

Passive sensor technological development is con-
tinually aiming at higher spatial and spectral
resolutions. Hyperspectral sensor systems repre-
sent a revolutionary development in the progress
of optical sensor spectral resolution, whichmay be
as high as a few nanometres, and can generate
nearly continuous spectral profiles of land surface
materials. A hyperspectral sensor system is a
combination of the spatial imaging capacity of an
imaging system with the spectral analytical capa-
bilities of a spectrometer. Such a sensor system
may have several hundred narrow spectral bands
and a spectral resolution of the order of 10 nm or
narrower. Imaging spectrometers produce a com-
plete spectrum for every pixel in the image; the
dataset is truly a 3D data cube which allows
identification of materials, rather than mere dis-
crimination as with broadband sensor systems.
The data processing methodology and strategy
are therefore different in many aspects from
broadband images. It is more important to analyse
the spectral signature for each pixel rather than
to enhance the image to improve visualization,
although the latter will still be essential later on.

Figure A.4 A schematic diagram of a thermal scanner
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One of the earliest and the most representa-
tive hyperspectral systems is JPL�s advanced visi-
ble infrared image spectrometer (AVIRIS) (see
Table A.3). Figure A.5 shows the general principle
of hyperspectral systems. The incoming EMR
from the land surface goes through the sensor
optics and is then split into hundreds (e.g. 224 for
AVIRIS) of very narrow spectral beams by a
spectral dispersion device (e.g. interference fil-
ters) and finally the spectral beams are detected by
arrays of CCDs corresponding to, for instance 224
spectral bands. A hyperspectral system can be
either an across-track mechanical scanner, with
a small number of detectors for each band, or an
along-track push-broom scanner, with a panel of
hundreds of line arrays of CCDs. Hyperspectral
sensors are so far operating in either VNIR only or
VNIR and SWIR spectral ranges (Table A.3).

A.5 Passive microwave sensors

The land surface is also an effective radiator at
microwave range, although microwave emission
is significantly weaker than thermal emission.

As another type of passive sensor, microwave
radiometers are designed to image the emitted
radiation from the Earth�s surface at this spectral
range.

Thermal radiation from natural surfaces, such
as the land surface, extends from its peak in the
thermal infrared region into the microwave re-
gion. An Earth observation microwave imagining
radiometer operates in this spectral region to
receive microwave radiation from the Earth. As
a passive sensor system, it is important to under-
stand that a microwave radiometer is fundamen-
tally different from a radar sensor which is a
ranging system. The only similarity between the
two is that they both operate in the microwave
spectral range. A passive microwave sensor sys-
tem, a microwave imaging radiometer, works
more like a thermal sensor system. It collects
emitted energy radiated from the Earth in the
microwave spectral range and provides useful
information relating to surface temperature,
roughness and material dielectric properties. This
type of sensor has been used for global tempera-
ture mapping, polar ice mapping and regional soil
moisture monitoring.

Table A.3 Some hyperspectral sensors (airborne and satellite borne�)

Instrument Spectral range (nm) Bandwidth (nm) No. of bands

AVIRIS 400–2400 9.6 224
AIS 1200–2400 9.6 128
SISEX 400–2500 10–20 128
HIRIS 400–2500 10–20 128
MIVIS 430–1270 20–54 102
HyMAP 400–2500 16 125
Hyperion� 400–2500 10 242

Figure A.5 Principle of an imaging spectrometer (hyperspectral system)
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A spaceborne microwave imaging radiometer is
often a multi-channel scanner such as the scanning
multi-channel microwave radiometer (SMMR),
onboard Seasat and Nimbus (1978), and the micro-
wave imager, onboard the TRMM Tropical Rain-
fall Measuring Mission (TRMM) satellite (1997).
It consists of an antenna together with its scanning
mechanism, a receiver and a data handling system.
The received emitted microwave signals are close-
ly related to the observation angle and the path
length in the atmosphere. Ensuring that these
scanning parameters are constant can significantly
increase the accuracy of the derivation of the
surface parameters from microwave brightness
temperature. A conical scan configuration is pop-
ular for passive microwave scanners. As shown in
Figure A.6, the antenna observation direction is
offset at a fixed angle from nadir, rotating its scan
around the vertical (nadir) axis and thus sweeping
the surface of a cone. If the scan is configured for
full 360�, double coverage fore and aft of the
spacecraft is obtained. With the forward motion
of the satellite along its orbit, a belt of land surface
is imaged. Obviously, in a conical scanning geom-
etry, the observation angle and distance to any
scanned position are constants. Spaceborne pas-
sive microwave scanners are usually of low spatial
resolution, from several kilometres to several tens
of kilometres, because of the weak signal in the
microwave spectral range.

A.6 Active sensing: SAR imaging
systems

Radar is essentially a ranging or distance-measur-
ing device. Nearly all the imaging radar systems
are configured as side-looking, referred to as side-
looking radar (SLR). The reason is that, as a ranging
system, radar forms an image by recording the
position of return signals based on time. If a radar
system is configured to view both sides of the
platform (aircraft and satellite) symmetrically, the
return signals from both sides in an equal distance
will be received at the same time, causing
ambiguity.

A radar system transmits microwave pulses at a
carrier wavelength/frequency and then receives the
echoes of these pulses scattered back by ground
surface objects. The wavelength and frequency
(radar bands) of commonly used microwave pulse
carriers are listed in Table A.4. The code letters for
the radar bands in the table were allocated during
the Second World War, and remain to this day.

Radar image data are configured in relation to
two coordinates: slant range and azimuth. Slant
range corresponds to the two-way signal delay time.
By measuring the time delay between the transmis-
sion of a pulse and the reception of the backscat-
tered �echo� from different targets, their distance to
the radar and thus their location can be determined,
and, in this way, a radar image is built in the slant

Figure A.6 The conical scanning mechanism of a passive microwave sensor
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range. In the azimuth direction, the image is built
according to the pulse number sequence. As the
radar platform moves forward, it transmits micro-
wave pulse beams to scan on one side of its flight
path, strip by strip, and simultaneously records the
backscattered signals. As such, a 2D radar image is
built up.

The azimuth resolutionRa of a real aperture SLR
is a function of radar wavelength l, the slant range S
and the radar antenna length, Dr:

Ra ¼ Sl
Dr

: ðA:2Þ

According to this formula, the azimuth resolution
Ra is inversely proportional to the length of the radar
antenna Dr. For a given radar wavelength and slant
range, the longer the antenna, the higher the azi-
muth resolution. There is, however, a physical limit
to the length of a radar antenna onboard an aircraft
or satellite, and that constrains the potential spatial
resolution.

SAR is a technology which solves this problem.
Compared with conventional, real aperture radar,
SAR achieves high along-track (azimuth) resolu-
tion by synthesizing a virtual long antenna with the
motion of a very short antenna, by intensive data
processing of the coherent backscattered radar
signals based on information of the Doppler fre-
quency shift.

As illustrated in Figure A.7, while the SAR
platform is moving along its path at an altitude
H, it transmits microwave pulses into the antenna�s
illumination footprint, at the rate of the pulse

repetition frequency (PRF), and receives the echoes
of each pulse backscattered from the target surface.
The short antenna of an SAR produces a wide
footprint (the area illuminated by the radar beam
pulse) on the ground. If the platformmotion is small
in comparison with the width of footprint and the
PRF, several consecutive footprints overlap. Typi-
cal PRFs for SAR systems are in the range of
1–10 kHz, which is relative high in relation to the
low travel speed of a platform, and thus each point
on the ground can be illuminated many times when
an SAR platform passes over. The echoes of these
repeat illuminations of the same point will be
received by the antenna at a slightly higher frequen-
cy than the carrier frequency as (fc þ df), when the
SAR is approaching the point, and slightly lower
frequency than the carrier frequency as (fc� df),
when it is moving away from the point, according to
Doppler frequency shift effects. Thus depending on
its position in the overlapped stack of footprints, a
point is uniquely coded by its Doppler frequency
shift signature. Consequently, the signal processing
of matched filtering from the Doppler effect can
achievevery high azimuth resolution on the scale of
a fraction of the SAR footprint width. The effect is
equivalent to connecting a sequence of positions for
a short antenna, of a SAR travelling along its path,
corresponding to the overlapped footprints over a
ground point, to formulate a very long virtual
antenna as though it were a very long real aperture
antenna to focus on the point. Obviously, a short
SAR antenna means a wide footprint and thus
allows more footprints to overlap, forming a long
virtual antenna to achieve high azimuth resolution.
It can be proved that the azimuth resolution of the
SAR is half the length of its antenna (Curlander and
McDonough, 1991), or the shorter antenna diame-
ter Ds of SAR achieves higher azimuth resolution:

Ra ¼ Ds

2
: ðA:3Þ

For a high-slant-range resolution, the SAR emits
a chirp pulse with a bandwidth Bn of tens of
megahertz modulating a carrier wave frequency fc
(the nominal frequency of the SAR). Depending on
the increase or decrease in chirp frequencies, there
are ascending or descending chirps. For the case of
an ascending chirp, the exact frequency of a radar

Table A.4 Radar bands, wavelengths and
frequencies

Band
Wavelength
l (cm)

Frequency
(MHz; 106 cycles/s)

Ka 0.75–1.1 40 000–26 500
K 1.1–1.67 26 500–18 000
Ku 1.67–2.4 18 000–12 500
X 2.4–3.75 12 500–8 000
C 3.75–7.5 8 000–4 000
S 7.5–15 4 000–2 000
L 15–30 2 000–1 000
P 30–100 1 000–300
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pulse reaching the ground is higher in the far ground
range than in the near ground range, and so are the
echoes from different ground ranges. The same
applies to a descending chirp. The returned signal
is then demodulated with the chirp form and sam-
pled based on the chirp frequency shift from the
nominal frequency of the SAR, via matched filter-
ing, to achieve high range resolution.

When discussing microwave energy, the polari-
zation of the radiation is also important. Polariza-
tion refers to the orientation of the electronic field.
Most radar systems are designed to transmit

microwave radiation either horizontally polarized
(H) or vertically polarized (V). Similarly, the
antenna receives either the horizontally or verti-
cally polarized backscattered energy, and some
radar systems can receive both. These two polari-
zation states are designated by the letters H for
horizontal, and V for vertical. Thus, there can be
four combinations of both transmit and receive
polarizations as follows:

HH – for horizontal transmission and horizontal
receipt,

Figure A.7 Principle of SAR. The motion of the SAR antenna with a small length of Ds along its flight path simulates
a virtual long antenna Dr that enables a high azimuth resolution Ra much smaller than the SAR footprint width, via
matched filtering processing on the overlapped footprints (based on Doppler frequency shift df from the SAR carrier
frequency fc)
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VV– for vertical transmission and vertical receipt,
HV – for horizontal transmission and vertical re-

ceipt, and
VH – for vertical transmission and horizontal

receipt.

The first two polarization combinations are re-
ferred to as like polarized because the transmitted
and received polarizations are the same. The last

two combinations are referred to as cross-polarized
because the transmitted and received polarizations
are orthogonal.

Some past, present and future spaceborne SAR
systems are listed in Table A.5. SAR image data are
supplied in several different formats. Typically,
Single Look Complex (SLC) data are in 8-byte
complex numbers, while multi-look (intensity)
images are in 16-bit unsigned integers.
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Appendix B
Online Resources for Information,
Software and Data

Here we have compiled a list of what we hope are
useful resourcesavailableonorvia the Internet (asof
November 2008). These include links to the sites of
proprietary software suites and to those providing

programs which are shareware, or low cost, or en-
tirely free of licence. These sites are in themselves
often rich sources of background information and
technical help. Secondly, we include links to online

Essential Image Processing and GIS for Remote Sensing By Jian Guo Liu and Philippa J. Mason
� 2009 John Wiley & Sons, Ltd

B.1 Software – proprietary, low cost and free (shareware)

Autodesk www.usa.autodesk.com
ERDAS www.erdas.com
ER Mapper www.ermapper.com
ESRI www.esri.com
FME Safe Software www.safe.com
Geotools www.geotools.codehaus.org
GlobalMapper www.globalmapper.com
GRASS www.grass.itc.it
Idrisi www.clarklabs.org
ILWISS www.itc.nl/ilwis
ITTVis ENVI www.ittvis.com/envi
JUMP GIS www.jump-project.org
Landserf www.landserf.org
Map Window www.mapwindow.org
MapInfo www.mapinfo.com
PCI Geomatics www.pcigeomatics.com
Quantum GIS opensource www.qgis.org
SAGA GIS www.saga-gis.org
Various independent www.rockware.com
Variowin www.sst.unil.ch/research/variowin
Virtuozo www.supresoft.com.cn/english/products/virtuozo/virtuzo.htm



informationand technical resourceswhich are large-
ly independent of any allegiance to particular soft-
ware or are provided by independent (often charita-
ble)organizations.Thirdly,weincludea listofonline

data sources, some of which allow downloading of
data (either free of charge or with some payment
system in place) and others which merely enable
browsing of available data as quick looks or listings.

B.2 Information and technical information on standards, best practice,
formats, techniques and various publications

Association for Geographic
Information (AGI)

www.agi.org.uk

British Geological Survey (BGS) www.bgs.ac.uk
Committee on Earth Observation
Satellites (CEOS)

www.coes.cnes.fr

Digital Earth www.dgeo.org
Digital National Framework www.dnf.org
ESRI ArcUser online www.esri.com/news/arcuser
ESRI online knowledge base www.support.esri.com/index.cfm?fa=knowledgebase.gateway
Geospatial Analysis online www.spatialanalysisonline.com
Geospatial Information and Technology
Association (GITA)

www.gita.org

GIS Day www.gisday.com
GIS Research UK (GISRUK) www.geo.ed.ac.uk/gisruk
Grid Forum 2001 www.gridforum.org
International Association of
Photogrammetry & Remote Sensing

www.isprs.org

International DEM Service www.cse.dmu.ac.uk/EAPRS/IAG
Isovist Analyst www.casa.ucl.ac.uk/software/isovist.asp
MAF/TIGER background documents www.census.gov/geo/www/tiger/index.html
Open Geospatial Consortium www.opengeospatial.org
Ordnance Survey (OS) www.ordnancesurvey.co.uk
Remote Sensing and Photogrammetry
Society (RSPSoc)

www.rspsoc.org

UKGeoForum (umbrella organization) www.ukgeoforum.org.uk
Web 3D Consortium www.geovrml.org
World Wide Web Consortium www.w3.org

B.3 Data sources including online satellite imagery from major
suppliers, DEM data plus GIS maps and data of all kinds

ALOS data search www.cross.restec.or.jp
Asia Pacific Natural Hazards Network www.pdc.org/mde/explorer.jsp
Digital Globe (Quickbird & WorldView) www.browse.digitalglobe.com
EarthExplorer www.earthexplorer.usgs.gov
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ALOS data search www.cross.restec.or.jp
EOS DataGateway edcimswww.cr.usgs.gov/pub/imswelcome/plain.html
ESA EOLI catalogues www.catalogues.eoportal.org
GeoCommunity GIS free data depot www.data.geocomm.com
GeoEye (GeoFUSE) www.geofuse.geoeye.com/landing
GIS data depot www.gisdepot.com
GIS Lounge www.gislounge.com
GLCF wwwlcf.umiacs.umd.edu
Glovis www.glovis.usgs.gov
SPOT catalogue www.sirius.spotimage.fr
SRTM Public Data www2.jpl.nasa.gov/srtm/cbanddataproducts.html
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Pseudo colour display 7

Radar polarization 421

Rank exponent 245

Rank order 245

Rank reciprocal 245

Rank sum 245
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Ranking 245, 435 (Malcewski)

Raster data 3, 143

Raster to point 160

Raster to polygon 161

Raster to polyline 160, 434 Douglas

Raster to vector conversion 160, 434 (Douglas),

436 (Wu)

Rasterisation 158

Rating 244

Ratio images 24, 431 (Goetz)

Ratio measurement 142

Ratio coherence 129, 432 (Lee)

Ratio estimation 245

RBV 413

Real aperture (SLR) 420

Reclassification 182

Red edge 27

Reflective infrared (IR) 4

Regions 154

Relational operators 179

Remote sensing xv

Repeat-pass SAR interferometer 122

Result validation 238

RGB colour cube 6

RGB-IHS transform 57, 58

Risk 234, 433 (Agumya)

Root mean square errors (RMS) 235

Routes 155

Rubber sheet warping 108

SAM 96, 432 (Kruse)

Sample size 201

SAR 4, 419, 420, 431 (Curlander),433 (Olmsted)

SAR Interferometry See: InSAR

SAR intensity image 122

Saturation 57, 58

Scale factor 168, 172

Search radius 201

Secant 168

Sections 155

Selecting coordinate systems 174

Selective enhancement 267

Selective Principal Component Analysis See: SPCA

Semivariogram 199

Sensitivity analysis 237, 238, 435 (Malcewski,

Openshaw)

Sensor 3D status 105, 106

Sensors and satellites See: Appendix A

SFIM 73, 432 (Liu)

Shaded relief 216, 217, 434 (Corripio), 435

(Reichenbach, Welch)

Shapefile 151

Short wave infrared See: SWIR

Shrinking 187

Side Looking Radar See: SLR

Simple kriging 208

Simulated irradiance 29, 30

Simulated reflectance 29, 30, 432 (Liu)

Simulated thermal emittance 31, 432 (Liu)

Single look complex See: SLC

Single pass classification 92

Single-pass SAR interferometer 122

SLC 121

Slope 220, 434 (Jones), 435 (Skidmore), 436 (Ziadat)

Slope instability 335, 350

SLR 419

SMMR 419

Smoothing filters 40

Sobel filters 46

Soundshed 227

Spaghetti data 148

Spatial analysis 235, 241

Spatial attributes 178

Spatial autocorrelation 198, 435 (Tobler)

Spatial data 141

Spatial Decision Support System 231

Spatial decorrelation 129

Spatial modeling 381

Spatial relationships 145

Spatial variability 145

SPCA 82

Spectral analysis 267, 283

Spectral Angle Mapping See: SAM

Spectral contrast mapping 84, 430 (Chavez)

Spectral indices 26, 390

Spectral preserve image fusion technique 73

Spherical coordinates 166

Spheroidal coordinates 166

Spheroidal heights 165

Splines 204

SPOT 213, 415

Standard false colour composite 7

Standardisation 29

Stationarity 199

Statistical operations 186

stochastic 202

Stochastic interpolators 207, 434 (Krige)

Strategy 261

Structural enhancement 313

Suitability 236

Supervised classification 96

Supervised enhancement 26

Surface topology 225

Surfaces 143, 147, 155, 211

SVD 113

SWIR 4
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Target area identification 388

Targeted spectral image processing 377

Tasselled cap transformation 86, 431

(Crist, Huang, Kauth)

Temporal decorrelation 130

Thematic Mapper See: TM

Thematic mapping 138, 271

Thermal infrared 4

Thermal infrared sensors 416

Thermal sensing 416

Threshold uncertainty 233, 236

Tie-point 166

TIN 155

TM 410

TM clay mineral ratio index 29

Topographic information extraction 339

Topology 148

Total cost 187

TRADEOFF 254

Transverse Mercator 170

Trends 200

Triangulated Irregular Network 155, 214

Tristimulus Colour Theory 5

TRMM 419

True colour composite 6, 7

Unary operations 182

Uncertainty 232, 435 (Malcewski)

Union 194

Universal kriging 208

Universal Transverse Mercator See: UTM

Unsupervised classification 92

User’s accuracy 101

Uses of Surface Data 215

UTM 172

Variograms 199

Vector data 147, 434 (Cicerone), 435 (Mineter)

Vector equivalents to raster map algebra 192

Vector projection 216

Vector surfaces 214

Vector to raster conversion 158

Vectorial fuzzy modeling 256, 434 (Knox-Robinson)

Vectorisation 160, 434 (Douglas)

Vertex Dictionary 149

Vertical exaggeration 219

Viewshed 226, 435 (Wang)

Virtual Reality Modelling Language 215

Visible-photographic infrared 4

Visualising in three dimensions 218

Visualising in two dimensions 216

Visualising surfaces 215

VNIR 4

Voronoi polygons 157, 435 (Whitney)

VRML 215

Vulnerability 234

Water resource exploration 386

Watersheds 225, 433 (Band), 434 (Jenson), 435

(Meisels) 436 (Wood)

Wavelet transforms 144

Weighted factors in Linear Combination See: WLC

Weighted mean filters 41

Weighted sum vector (WSV) 246

Weighting coefficients 244

Weights of evidence modelling 249, 434 (Chung), 435

(Dempster)

WGS84 173

WLC 252

World file 174

World Geodetic System 1984 See: WGS84

Worldview-1 213

X3D 215

Zonal operations 192
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